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ABSTRACT

AN ANALYSIS OF THE SMALL-SCALE STRENGTH TESTING OF ICE
by

KENNETH R. MASER

The inadequacy of small-scale strength test
results for the prediction of ice sheet strength
is recognized. Certain patterns appear in these
test results which suggest that the plasticity
of the individual crystal is a controlling factor.
It is found from previous investigations that ice
crystal plasticity is dominated by basal glide,
and that the stress-strain-time properties have
the characteristics of strain softening. A stress-
strain-time relation is proposed which best matches
the reported results. This relation is used in
analytical models which treat the small-scale sam-
ple as an assembly of grains. A modeling by springs
and dashpots shows how failure stress in uniaxial
tension increases with increasing strain rate in
a given range. A finite element medel for a poly-
crystalline sample gives guantitative support for
this result, and the resulting curve is very simi-
lar to that obtained by previous experiments. The
model also reveals the character of the nonuniform
stress field associated with the coarse grained
sample. Several directions for future research
are discussed.
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Chapter I
INTRODUCTION

Interest in the mechanical properties of ice has focused around
two major areas—the study of the flow of glaciers and the study of
the strength of floating ice. The motivation for this thesis arose
from an attempt by the author to use an analytical approach to predict
the strength of floating ice sheets. Since the results of this thesis
have this particular problem in mind, a brief discussion will first be

presented.

A. The Strength of Floating Ice Sheets

The numerous engineering problems associated with the strength of
f]oéting jce sheets can be categorized as either problems associated
with a supporting structure or problems associated with a design force.
The problems of support of building facilities, over ice transportation,
and aircraft landing are all concerned with the adequacy of an ice sheet
as a supporting structure. On the other hand, problems of ice forces
on harbor facilities, dams, offshore structures, and icebreakers all
deal with the ice sheet as a design force, and hence are concerned with
the ability to destroy it. |

Iee sheets in nature take on the convenient structural form of a
rlate. Tha modeling of ice sheet problems as plate problems will be

briefly discussed.
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Problems of bearing capacity can be represented as the bending
of a plate on an elastic foundation, the bouyant force of the water
being represented as a uniformly distributed linearly elastic spring
with a spring constant equal to the welght density of the water. The
problem of vertical forces due to ice adhering to structural legs and
subject to tidal variations can also be modeled this way 1f the ice
sheet rather than the ice-structure contact is expected to fail.

Horizontal forces on structures can be modeled as an ice sheet
in plane stress, subject to the forces of the structure plus the forces
due to current drag or thermal expansion and coentraction. Inclined
structural elements and icebreakers apply both horizontal and vertical
loads, and hence imply a combination of both plane stress and bending.

The time scale associated with Toads on an ice sheet varies con-
siderably. The load duration of a building facility can be measured
in months or dayé. The loadings associated with tidal and thermal
fluctuation are measured in hours, the duration of vehicular traffic
in minutes, and the load history of an ice floe impact or aircraft land-
ing in seconds.

Some knowledge of the type of failure expected is useful in deter-
mining the type of analysis to use. Some informatioﬁ on this subject
is already available. Frankenstein] conducted bearing capacity tests
on relatively thin ice {6 to 18 in. thick} and made the following obser-
vations. Failure was always preceded by the formation of cracks on the
under side of the ice extending radially outward from the center of the

load. Following this event one of two events took place When the Toad
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was reasonably distributed (i.e., load diameter > 10 X thickness)
circumferential cracks formed on the top surface of the ice prior to
failure. The failure hole was between 17' and 18' in diameter for a
distributed Toad 15' in diameter. When the load was coﬁcentrated (2
in diameter) the number of circumferential cracks was fewer and less
visible, and the ultimate failure hole was approximately equal to the
diameter of the load. These configurations are shown in figure 1.1.
For lateral loads on structural elements two types of failure have
been observed.2 The first is the formation of radial cracks due to the
plane stress or combined plane stress and bend ing stress fields. This
is then followed by either a local crushing of the weakened ice, by the
breaking up of pie-shaped pieces due to bending, or, in the case of an
ice flce, by cleavage of the floe. Alternatively, no noticeable crack-
ing takes place and the ice is simply crushed by the structure, leaving
a clean slot flanked by a berm of crushed ice. These situations are
depfcted in figures 1.2 and 1.3. Which kind of failure occurs is dic-
tated by the amount of ice which participates in the loading, which in
turn seems to depend on the rate of loading, the shape of the ice-
structure contact, and the integrity of the ice. The slot type fallure
has been witnessed in the Cook Inlet, Alaska, where ice floes move at
speeds of the order of six knots.2 Radial cracks have been frequently
observed at lower Joad rates. In either case, force time records for
structural menbers subjected to lateral ice loads have revealed a perio-
dic character, which seems to be a property of the ice rather than one

of the structure.3 A typical force-time record is shown in figure 1.4.
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Figure 1.1 Bearing ?ai1ure Patterns

Figure 1.2 Plane Tensile Failure of an Ice Floe
(arrows indicate current direction)
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Figure 1.3 Slot Failure at Rapid Loads’

v=5ft/sec v=,5ft/sec

time (sec.)

Figure 1.4 Load-Time Historyz
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For problems of plane stress, bending, and combinations thereof,

a knowledge of the geometry, the loading, and the expected failure pode
invites a variety of solutions. Meyerhoff4 has treated ice as a rigid-
plastic material and has determined the bearing capacity of an ice sheet
via limit analysis. The yield lines in his analysis coincide with the
radial and circumferential crack patterns which have been observed in
ice sheets. Neve15 has analyzed an ice sheet as a viscoelastic plate
on an elastic foundation. Frankenste‘in1 has fit his experimental values
of deflection into Nevel's solution in order to obtain the material
parameters E {Young's modulus) and n (viscosity‘. The resulting values
show a wide scatter. Nevel® has also treated the problem of an infinite
wedge on an elastic foundation, observing that ultimate failure in many
cases occurs due to failure of pie-shaped pleces.

| The major difficulty encountered in applying such amalyses is the
limited knowledge of the material properties of ice—in particular, the
stress-strain behavior and the required failure criterion. This situa-
tion is further complicated by thelfact that a reasonably thick ice
sheet, as normally found in the Arctic, is not uniform through the thick-
ness. While the top surface of the sheet is approximately equal to the
ambient temperature (say, -30° C), the bottom surface is always at the
freezing temperature of the water {0° C}. For any material in the neigh-
borhood of its melting point, this is a critical temperature range, and
a considerable variation of properties with temperature, and hence depth,

can be expected.
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8. Ice as an Engineering Material

Ice does not exhibit many of the niceties which are characteristic
of other engineering materials. It is formed in nature under a variety
of natural conditions. It exhibits a complex intermal structure, much
of which is visible to the eye, and in this respect is very similar to
concrete. Ice is difficult to work with because the temperatures at
which it exists are not normally compatible to most human beings. In
addition, ice shéets are not smooth ideal plates, as may have been im-
plied by the previous section. Although lake i nd 1agoonlice is fairly
smooth, arctic pack ice has a highly irregular surface, with irregulari-
ties (e.g., hummocks and pressure ridges)} several feet high:

As indicated in the previous section, the properties of ice as an
engineering material are virtually unknown. A few properties have been
generally acknowledged. First, ice is weaker in tension than in com-
pression. Hence, when ice is subjected to a general state of stress,
maximum tension has been assumed to govern the failure. Second, ice is
presumed to exhibit seme form of time deperdent plastic flow. This was
first apparent from observations of the flow of glaciers, which travel
down the sideé of mountains at sometimes incredible speeds {100 to 200
feet per day has been reported).? Hence glaciologists have treated ice
as a viscous fluid. The engineer concerned with ice sheets is confron-
ted with a broad range of time scales, and as yet it is not clear when
and to what extent such plastic flow is significant. Third, the mechan-

jcal properties of ice depend on various parameters. The strength of an
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{ce sheet depends on {ts thickness. The strength of ice in general de-
pends on how fast it is loaded, its temperature, and, in the case of sea
jce, its salinity. It is important to understand how the mechanical pro-
perties depend on these parameters in order to make sensible predictions
of ice sheet strength.

Owing to the great thickness attained by Arctic ice sheets {(e.g.,
3 to 6 ft.), and to the great forces required, to fail such ice sheets,
full-scale testing is prohibitively expensive. In addition, the number
of variable parameters lTimits the amount of information which could be
derived from such tests. Consequently, the major emphasis has been
placed on small-scale testing. The results of great numbers of small-
scale tests have been reported in the Titerature, but as yet there hdve
been few realistic suggestions as to how to apply these results to ice

sheet strength problems.

C. Scope

The purpose of this research {s to examine the available small-scale
strength data with the intention of obtaining some sort of unified view
as to their meaning. Since there are so many factors affecting ice
strength, attention will be given to tests on a particular type of ice
structure which is the dominant form found in ice sheets, i.e., columnar
grained ice (to be defined). The test results will be studied in terms
of two particular effects, i.e., the effects of grain size and plasticity.

Before studying the results of small tests it is necessary to review

the internal structural properties of ice, since they exert a large in-
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fluence on the observed strength. This is done in Chapter II. Chap-
ter IIT presents a review of smali-scale test results and some inter-
pretations in terms of grain size and plasticity. Chapter IV reviews
the plasticity of single crystals of ice, and presents a flow law which
is employed in the polycrystalline models of Chapter V. Chapter VI
presents the conclusions of the study and Chapter VIT suggests applica-

tions to full-scale ice sheets and directions for future research.
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Chapter II
THE INTERNAL STRUCTURE OF ICE

A. Introduction

The results which have been obtained in small-scale tests can be
directly related to the internal structural properties of ice. Before
proceeding with a discussion of small-scale test results, therefore,
it will be useful to review the characteristics of the internal struc-
ture of ice and to suggest how they manifest themsel#es mechanically.
A thorough review of this subject is presented by Heeks and Aséur,14

and much of the foregoing has been cordensed from their report.

B. 1Ice as a Polycrystal

" Although eight known crystalline modifications of solid H20 have
been isolated and identified, only one is known to exist at the normai
temperatures and pressures experienced on the earth.8 This form is
known as Ice 1 (henceforth abbreviated as “jce"), and it {s the most
widely distributed solid found on the earth's surface. Ice generally
exists in the form of a polycrystal, whose grain size and structure
are highly dependent upon the conditions of growth. Saturated snow ice,
for example, has a Qrain size of less than one millimeter, while cry-
stals several feet in diameter have been found in glaciers and on the
bottom surface of Arctic ice sheets.

Single crystals of ice exhibit a molecular structure in which the
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oxygen atoms occupy positions in a puckered hexagonal lattice. The

plane of the hexagon is referred to as the "basal plane" and the axis
perpendicular to the basal plane is referred to as the "c-axis." The
molecules are so arranged that for a given unit cell containing four
oxygen. atoms, cleavage along the basal plane requires the destruction
of two bonds, while cleavage along a plane perpendicular to the basal

plane requires the destruction of four bonds.

C. Characteristics of an Ice Cover

Ice crystals initially form on the surface of the water in the
form of small discs, whose plane coincides with the basal plane of the
crystal. Because of close packing in the hexagonal plane, the discs
tend to grow most rapidly in their own plane, until they intersect one
another to form a continuous skim of ice over the water surface. Dis-
turbances in the water surface cause many of the discs to be frozen
at some inclination to the surface. After the skim forms, the ice must
begin to grow vertically, and hence the inclined crysfals have the pri-
mary growth freedom, The crystals which are closest to being vertical
will have the greatest gfowth freedom, and as the jce sheet thickens,
these crystals will begin to predominate. The distance over which this
“geometric selection" takes place is referred to as the "transition
layer," and it varies with initia] conditions of ice growth, with typ-
ical values for sea ice between 5 and 10 cm. from the {ce-air interface.

Below this layer the grains will be columnar shaped with c-axes
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oriented randomly in the horizontal plane (figure 2.1). The grain
diameter tends to increase with increasing depth, with typica1 values

ranging between .5 and 2.0 cm.

Lake Ice
The ice cover which forms on lakes in northern United States is
generally reported to have two distinct layers—a layer of snow ice

9,10,11,12 The clear ice is formed

covering a layer of clear ice.
from the lake water as described in the previous section. Snow ice is
formed from the freezing of lake water that ha< infiltrated the snow
cover.]o Snow ice in general consists of small size crystals which
have neither a preferred orientation of crystal axis nor a preferred
geometric shape. .Such crystals are referred to as equigranular. The
crystals of the clear ice have been foﬁnd to exhibit both c-axis hori-
zontal and c-axis vertical orientations, although the former occurrence

is most favored. This tends to depend on the conditions of growth and

the thickness of the sheet.

Sea Ice

The most significant occurrence in the freezing‘of sea ice is the
rejection of salt from the solid phase. At the microstructural level
the solid component of sea ice is fresh water jce. This suggests that
the entire ice cover should be fresh ice covering a.layer of very salty
water due to the rejection of brine. The fact that this is not the
case, i.e., that pieces of sea ice contain a considerable amount of

salt, is explained by the instability of the planar interface between
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c-axis

Figure 2.1 Grain Structure in an Ice Sheet
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the bottom surface of the ice and the water. This comes about as a

result of the changed freezing temperature profile due to the concentra-
tion gradient produced by the rejected salts. The result is that ice
crystals protruding vertically into the water tend to increase in size,
rather than waiting for the rest of the ice to catch up. These verti-
cal crystal plates eventually bridge together and entrap vertical col-
umns of high]y concentrated calt water. These entrapped brine pockets
are responsible for the salt content of sea ice. They are also respohsi-
ble for the fact that sea ice is opaque, while lake ice is generally
transparent. The geometry of this situation i: shown in figufe 2.2.

A typical grain of sea ice can be thought of as a long bundie of plates,

with cylindrical brine pockets sandwiched between the plates.

D. Ice as a Solid Continuum

It is of interest here to deal with ice sheets and ice samples us-
ing concepts of stress analysis, and therefore it is necessary to de-
fine the continua over which such analyses shall apply. This may seem
1ike a formality, but in the 1ight of the frequent discussions in the
literature of “"stress concentrators" and their effect on smail sample
stre:ngth,]4 and in the light of the coarse internal structure of ice,
it is a necessary step.

The basic continuum for.ice is that for which the dimensicns of
any problem of interest are much greater than the intermolecular dimen-

sions in the ice crystal lattice. A "poiat" in such a continuum must
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Pocket geometry

ets are sandwiched between parallel layers.

The grid length is 1 cm.

Brine

pock

“b)

(a) Grain geometry in the horizontal plane. Brine
Figure 2.2 Internal Structure of Sea Ice (Weeks and Assur)
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contain a sufficient number of molecules such tkat any average con-
tinuum property reaches a stable Timit as the averaging region approaches
the size of a point. This continuum will be referred to as continuum L.
It is appropriate, for example, to deal with ice as continuum I for pro-
blems involving the concentration of stress about brine pockets or air
bubbles, which have typical dimensions between .1 and .5 mm.

A second continuum appropriate for sea {ce would be one for which
the dimensions of interest are much greater than the typical dimensions
associated with the geometry of brine pockets. A "point“‘ih this con-
tinuumsreferred to as continuum IT, must contain seve-al brine pockets.
It would be reasonable to say that an individual grain of sea ice, of
dimensions of the order of 1 cm., is filled with material of continuum
II.

Continuum III is one for which dimensions of interest are much
greater than grain sizes. This is the continuum of relevance in deter-
mining the strength of ice sheets, and the one for which we would ultim-
ately Tike to know the full spectrum of mechanical properties. A pro-
blem arises from the fact that typical small-scale test-dimensions are
such that the small sample is about the size of a "point" in continuum
III. In addition, the small samples are loaded in such a way that they
do not experience the eguivalent of "“stresses," nor do they exhibit
failures characteristic of continuum ITI. These considerations will be
dealt with later in the discussion of small-scale test results and in

the development of interpretive models.
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E. A Strength Model for Sea Ice

Before proceeding to the results of smail-scale tests, it is neces-
sary to mention the most important theoretical development in the study

of the strength of sea ice. The theory, proposed by Anderson and
15

Weeks 16

and refined by Assur, = relates the strength of sea ice to the
volume fraction of entrapped brine, v. A geometric model is proposed
for the regular arrangement of brine cylinders in sea ice (figure 2.3).
On the basis of this model, the variation of the failure stress, o, 1is
computed in terms of the reduction in load carrying area due to changing
dimensions of the brine cy]inderé. The relationship between failure

stress-af and brine volume v takes on the general form

gf = 04 (1 - AvP) . (2.1)

where Ty is the "basic strength" of ice with no brine, A is a constant,
and p takes on the values of 1/2, 2/3, and 1, depending on the type of
geometric similarity maintained with changing brine volume and on the
cross-sectional shape of the brine cylinders. The brine volume, v, is
computed from temperature and salinity using the phase relations for
sea_ice,16 and is found to increase with increasing temperature and
salinity. |

The results of small-scale tests have confirmed the prediction of
Eq. (2.1). Most investigators have found that a value of p = 1/2 offers
the best data fit. Although Eq. (2.1} strictly applies to stress de-
fined in continuum II, the uniformity of temperature and salinity in a

region embracing a sufficient number of grains should make it applica-

ble to continuum I stresses.
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Chapter III
A REVIEW OF SMALL-SCALE STRENGTH TESTING

A. Introduction

During the past several years some rather extensive {nvestigations
into the small-scale strength properties of {ce have taken place. These
efforts have been motivated primarily by a desire to obtain a rational
basis for the prediction of the strength of ice sheets. Because of the
wide scatter associated with small-scale strength results, each inves-
tigator has had to perform a great many tests n order to obtain mean-
ingful relationships between strength values and the various parameters
involved. In general, each plotted data point represents the average
of some 10 to 20 tests.

Tests have been performed both in the field and in the 1lab. The
field tests have the advantage of closeness to the natural environment.
These tests simﬁ1ate the most desirable engineering situation, i.e., the
ability to obtaiﬁ on-site information about the strength of an ice sheet
in a particular environment. The environment, on the other hand, gen-
erally limits the kind of equipment which can be used and the capabii-
ity of the human beings performing the experiment. This, therefore,
presents restrictions on the kinds of tests which can be performed and
on the care with which quantities can be measured and controlied. Lab-
oratory testing permits a more careful study of the dependence of
strength on the various parameters which affect it. Lack of environ-

mental constraint permits a greater range of parameters which can be
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considered, and greater consistency in test procedures. Their purpose,
in general, is to serve as a guide for future field testing.

Some investigators, in an attempt to combine the.advantages of
both types of tests, have had field samples shipped to a laboratory
for testing. This procedure, however, introduces new unknowns due to

the effects of storage.

B. Factors Affecting Test Results

.. In-order to perform, analyze, and compare the results of any series
of tests, attention must be:given to the variability in the internal i;
structure of jce, to the environmental parameters.associated_with;;he:
sample, and to the alternative test and measuring procedures. Some of
the significant factors, as described by various investigators, are .

listed below.

load. rate. .

.. As shown in figure 1.4, the force exerted on a structure by an
ice floe depends on the rate of load application. .This effect has -also
been observed in small-scale tests. Load rate is generally expressed
as stress per unit time, and is represented here by . The'experfméﬁter,
houever, usua]]y contro1s the dlsplacenent rate of the load- app1y1ng
dev1ce.' Hence the presentat1on of resu1ts in terms of load rate can
be-m{sieadihg. Load rate is usual]y measured by dividing the computed
maximum stress by the time to failure, or by making somé'kiﬁd'of Tinear

fit to the load-time curve.
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temperature
Temperature is generally expected to have an effect on the mechan-

jcal properties of a material. Typical ice temperatures range from

0° to -40° C.

grain structure

As indicated in chapter 1I, different types of ice have different
grain geometries. Some are columnar with random shape in a plare
(columnar-grained), while others exhibit a random shape in space (equi-
granular). The orientation of crystallographic axes within grains also
varies. Some structures have a random c-axis orfentation, gthers have
a preferred c-axis orientation. It is important to know the orienta-
tion of applied stress with respect to any preferred grain geometries

and c-axis orientations.

depth in ice sheet

Ice properties vary with depth in an ice sheet. This property
variation is frequently dealt with in terms of variations in temperature,

salinity, and grain size.

stress hisfory

The processes of extracting and machining test samples induces
initial stresses and strains, not to mention the fact that natural ice
sheets are subjected to considerable stresses and deformation before

test samples are removed.
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sample size
The question of scale effect becomes important when testing the

behavior of a structure using a small-scale model. The largeness of
the internal structure of ice also indicates that strength might vary

with the sample size.

The following factors are peculiar to sea ice:

salinity
As discussed in the previous chapter, the effects of salinity are

generally handled in terms of brine volume, an. compared against the

strength-brine volume theory.

brine drainage

. Samples stored for any length of time experience a certain amount
of gravitational brine drainage, while samples turned on a lathe will
experience centrifugal brine drafnage.ln addition, the brine volume of
any given point in an ice sheet varies with time, with a general ten-
dency to decrease. In these cases, the internal structure which came
about as the result of brine entrapment still remains. If strength 1s
to be related to internal structure via brine volume, then these losses

must be taken into account.

solid salt reinforcement

The various salts present in sea water crystallize within the
brine pockets at various temperatures in accordance with the phase re-

lations for sea water. 1t has been obsewed]6 that at -23° C, where
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NaC1-2H,0 precipitates, sea ice‘tékes on noticeably different visual
and_m'chan1ca1 charmcteristics. This observation has led to the belief
that these salts precipiiai . in such a way as to reinforce the walls of
existing brine cylinders. Consequently, it has been suggested that dis-
continuities in strength relationships éhou]d be expected to take place
at these temperatures, particularly ét_-8.2° C (prec?pftation of

Na2504-10 HZO) and at -23° C.

age of ice
Differences in propertles between annua] ie and tce of greater

age are expected. -One such property s the 1oss of brine.

_geometric hysteresis

Heeks17 has suggested that a test specwmen subject to temperature
fluctuations part1cu]ar1y a warming’ cyc?e. might vetain the internal
structure of the warmest temperature atta1ned; although this is not the
test temperature. He found this hypothesis to be significant in affect-
ing sfrengthsiﬁe1ow -23° €. This is a prob]en which may be encountered

" {n the storage of test samples.

L

It is evident that to discuss the existing data in tores of all of
these factors would seriously limit the possibility of drawing any con-
clusions. They have been brought up now so that their subszauent men-
tion in connection with any of the.resu1ts mentionad herein will be
facilitated. | |

For the ensuing discussion,.attention will be Jirectud Lreaerds

-

presenting regular patterns which have been ofserved betwzen ice zampl2
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strength and temperature, rate of loading, and brine volume.

C. Description of Tests

The most typical types of strength tests employed on ice samples

are shown in figufe 3.1, and are described briefly below.

uniaxial comoression test

These have been generally perfofmed on cylinders or rectangular

prisms of width 2 to 8 cm. having a height-to-width ratio from 2 to 3.

18

Russian investigators have frequently used cubes. Compressivé

strength will be designated as ¢

uniaxial tensile tensile test

These have usually been confined to the laboratory because of the
problems associated with gripping the ends of the specimen. Devices

for accomplishing this have included a braided wire gripping device,lo

20,21 clamping tapered ends between

freezing the ends to metal fixtures;
fitted metal grips,zz and applying the load through a bolt passed
through a wide portion of the specimen.23 Samples are generally 2 to
5 cm. in width or diameter.

Given that therewereno problems associated with the toad applica-
tion, the uniaxial tensile test {s the best of the tests forltensi1e
strength, since the load is applied uniformly énd the stress is com-

puted directly from the applied load. The fact that it is difficult to

conduct has caused investigators to seek alternative means for determin-
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ing tensile strength. Uniaxial tensile strength values will be desig-

nated by qy-

flexural test

The use of the flexural test exploits the fact that ice is much
weaker in tension than in compression. These tests have employed both
‘center-point and third-point loadings. Beam depths range from 2 to 6
cm. In all cases the stress has been computed via the elastic beam
formula, Ofg. = M/S, where M is the maximum bending moment, S is the
section modulus of the beam, and Tso is the computed stress at failure.
Due to the nature of the stress distribution from elastic theory, only
a very small portion of the cross section is subject to stresses near

the computed maximum.

ring tensile test

Due to the simplicity of obtaining and testing samples, this has
been by far the most popular of the small-scale strength tests., It
originally was used in connection Qith rock mechanics. Preparation of
samples involves cutting a cylindrical core out of the ice sheet, slic-
ing it into discs, and drilling a coaxial hole in each disc. A com-
pressive load is applied perpendicular to the cylinder axis, producing
tension at the inside hole under the load. This {s where the failure
takes place. The tensile stress causing this failure is computed from
an elasticity solution to the problem presented by Ripperger and

39

Davids®? which yields



= PK (3.1)

where P is the applied load, r, 1s the outside radius of the cylinder,
S ¢ is the "ring tensile strength,” and K is a concentration factor de-
pending on the ratio ri/ro, whare rs is the inside hole radius. The
dimenéions of the r{ng tensile specimen have been standardized duc to
available equipment and for the sake of consistency. A 3 in. diameter
coring auger extracts the sample (ro = 1,5 in.}and a % in. diameter co-
axial hole is drilled (ri = ,25 in.). For these values, K = 7.00.19
These dimensions apply to all the results discussed herein, unless otner-
wise indicated.

The difficulty with the ring tensile test is similar to that of
the flexural test. The maximum stress must be computed using elastic
theory, and, so computed, is localized in a very small region of the

sample. This problem is exaggerated in the ring tensile test because of

the high stress gradient at the inside hole.

Brazil test

The Brazil test is a ring tensile test without the hole. The
theory of elasticity solution for this configuration predicts a uni-
form tensile circumferential stress under the load, indicating that
failure should be characterized by the cylinder splitting in half. This
type of failure has been observed in the testing of rocks. The magni-

tude of the failure stress is expressed as

- P (3.2)
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and is equivalent to the ring tensile solution with K = 1. There has
been some confusion over the interpretation of Brazil test results, due

to the fact that for the ring tensile stress field,

Tim K

ry > 0

6.0 (3.3)

1. This is a mathematical discontinu-

while Eq. {3.2) implies that K
jty. In an effort to force Brazil test results to match ring tensiie
test resu?ts? investigators have suggested that the existence of small
brine holes and/or air bubbles implies that K = 6 should be used.]ﬁ
Considering the discussion of chapter II, it is not appropriate to
speak of concentrations due to a .1 to .5 mm. diameter hole and due to
1/2 in. diameter hole in terms of the same stress field. Mellor and
Ha’wkesz4 have also suggested that the large compressive stresses in
the Brazil test specimen (3 times the tensile stress at the center)
should be considered in the failure criterion. Due to these problems
of interpretation, and due to the greai amount of scatter reported to

be aséociated with Brazil test results, this test has not been used

extensively.

shear test

No standard shear test has been developed for ice. Torsional
shear tests by Butkovich'® resulted in spiral shaped failure surfaces,
indicating failure due to tension. "Direct shear" tests are designed

to force the specimen to fail in shear on one or two particular planes.
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This has been accomplished by several different methods, and the limi-

ted results which are available seem to depend on the method used.

in-situ cantilever

Although this is not a small-scale test, available results are
sufficiently numerous and of sufficient interest that they merit atfen-
tion in the context of small-scale tests. The cantilever is carved out
of an ice sheet by cutting three sides with a saw and allowirg the
fixed end to remain connected to the ice sheet. The load is applied,
up or down (tension in bottom or top) via some sort of lever arrenge-
ment. Ice thicknesses tested have ranged from 15 to 95 cm. The com-
putation of the moment at the fixed end has generally neglected the
change in bouyancy due to deflection, and the maximum stress, denoted
as gs__, is computed from the moment using elastic beam theory.

15C

D. A Review of Test Resultis

The presentéﬁion of test results in this section will be limited
to those results to which the analyses of the ensuing chapters are
applicable. In particular, attention is given to results for columnar-
grained ice, with c-axis perpendicular to the long axis of the column
and randomly oriented in the horizontal plane of the ice sheet. Those
loadings will be considered for which the applied stress is perpendicu-
lar to the long axis of the column and in the plane of the c-axis.
Althouch this is a rather specialized situation, it is the most fre-

quently encountared geometry and stress state associated with the bend-
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ing and/or plane stress states in an ice sheet. This type of loading
and grain geometry is illustrated in figure 3.2, and shall be assumed
unless otherwise stated. Other types of grain geometries and loadings
will occasionally be mentioned for the sake of comparison. A compre-
hensive review of small-scale strengih test results is presented by

Weeks and aﬂnssur.]4

compression test-—fresh water ice

Compression tests are generally characterized by the formation of
small interné] cracks at loads far below the failure load.]g’25 When
enough of these cracks have formed, failure takes place either along
a plane of maximum shear or along fault zones, the latter occurring at
higher load rates than the former.z5 Some of the strength results are
summarized below.

1) geometric effects

Butkovichg found that compressive strength decreased with increas-
ing ratio of length to diameter, and with increasing cross-sectional
area. He also found that larger grained ice yielded higher strength
values.

2) rate of loading

Gold25 found that the compressive strength of ice increases with
increasing crosshead speed as shown in figure 3.3. At the low Joad
rates the specimen yields, while at the high load rates, failure is
abrupt, as can be seen from the typical stress-strain curves shown in

figure 3.4. Weeks and Assur14 report results of Butiagin, which show
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a decrease of strength with increasing rate. These are also shown in

figure 3.3.

3} temperature
In general, fresh ice compressive strength has been found to in-

10,23 The results of Butkovichlo

crease with decreasing temperature.
are shown in figure 3.5, and are typical of those of other investiga-

tions. For infiltrated snow ice, Butkovich found a much weaker temper-

ature dependence.

compression test—sea ice

Compressive strength studies on sea ice have been carried out by

27,28 and Peyton.20 Specimens tested were both parallel and

Butkovich
perpendicular to the plane of the ice sheet. For both it wasfound that

failure was either by rapid deformation at the maximum load (ductile)

or by "bursting with a loud report into hundreds of small fr‘agmerﬂ:s.'?7
He also reports strengths of vertical cores to be two to three times
greater than horizontal cores. The following results apply to hori-
zontal cores.

1) rate of loading

Peyton has studied the load rate effect extensively. He expres-
ses the effect of lcad rate on strength as

o, <« ()¢ (3.4)

c
where & 1s the stress rate in psi/min. The rate exponent in compres-

sion, r_, is expressed via a regression analysis, as

.138 T.09 (3.5)

C

Te = 166 d
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Figure 3.5 Compressive Strength vs. Temperature-Fresh Ice
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where d is the depth of the ice sheet in inches and T is minus °C.
This relation was derived from load rates up to 3000 psi/min. The im-
plied strength—load rate relationship for a given depth and tempera-
ture, passing through an arbitrary data point, is shown in figure 3.6.
Later results in a higher load rate regime show the opposite effect,
i.e., decrease of strength with increasing load rate. These are also
shown in the figure.

2} brine volume

Butkovich presents limited data which Thdfcates decreasing strength
with increasing brine volume. Peyton analyzed his results in terms of
the brine pocket model discussed in chapter II, and found that the
strength variation with brine volume could be represented by a linear
variation with Y. His data also suggest that the slope of this rela-
tion changes discontinuously at -8.2°C, implying a reinforcing effect
due to the precipitation of Na2804-]0H20. Peyton's analysis indicates
that the effect of temperature, cther than throdgh brine volume and
solid salt precipitation, although more significant with increasing load

rates, is not so significant as in fresh water ice.

uniaxial tensile test—fresh water ice

The uniaxial tensile strength of ice is about 1/4 of its uniaxiail
compressive strength. Unlike compréssive failure, uniaxial tensile
failure occurs suddenly and without the noticeable formation of inter-

nal c:racks.]8 Uniaxial tensile results have been presented by Butkov-

ich!o 21

Jellinek,?! and by the South Manchuria Railway €o0.2> Butkovich
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used éommercial jce with loading normal to the columnar grains. Tests
reported in reference 23 Toaded specimens parallel to the ice sheet.
Although the crystal orientatfon of the latter is not made clear in
the reference, these two test series will be considered comparable,
Jellinek used fine grained equigranular snow ice prepared in the lab.
| 1} load rate

Figure'3.7 shows the dependency of strength on load rate as pre-
sented in references 21 and 23. The magnitudes should not be compared
because of the difference of ice types, but the trends are interesting

to note.

2) temperature

References 10 .and 23 show oy increasing with decreasing tempera-

ture. Their results have been plotted together in figure 3.8.

uniaxial tensile test—sea ice

Uniaxial tensile tests on sea ice have been performed by Dykins22
and Peyton.20 The tests by Dykiné were performed’on'éea water frozen
in the lab under conditions which simulated sheet ice growth. Peyton
used samples obtained in the field.

1) geometric effects

Dykins found no variation of strength with depth, for a fixed tem-
perature and salinity range. Since grain diameter increases with depth,
he uses this to conclude that there is no variation of strength with
grain size. Dykins also found tenSi]e strengths perpendicular to the
ice sheet to bz two to three times greater than horizontal tensile

sirength.
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Figure 3.8 Tensile Strength vs. Temperature-Fresh Ice
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2) load rate

Peyton's analysis of his data follows the format of Eg. (3.4),
where v ts now replaced by ry, the rate exponent in tension. A re-
gression analysis of his data Teads to the following re1ationship
for r,: _

r, = .082(d)"#%3(1) 0% (3.6)

This relation indicates a much lower strength sensitivity to
rate than was found in compression for the tensile load rates used.
The rate sensitivity to temperature is almost unnoticeable. It is
interesting to note that the rate dependence on depth is opposite tc
that found for compression. Dykins-found strength to decrease with
increasing Joad rate {n a higher load rate regime. The reéults of

these two studies are plotted together in figure 3.9.

3} brine volume

Both investigaforS‘found an approximéte]y 1inear dependence of

strength on v&. Dykin's results are shown in figure 3.10.

flexural tests—fresh water ice

Test results presented in reference 23 show that the flexural
strength of small beams decreases with increasing beam depth and with
increasing temperature. The results for temperature are shown in

figure 3.11.

flexural tests—sea ice

1} load rate

30

Dykinszg and Tabata” have studied the flexural strength of . ail
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sea ice beams, Tabata has studied the effect of 1oad rate and has
found an increasing strength with increasing iocad rate, with the ex-
ception of very low rates. His results are shown in figure 3.12.

2} brine volume

The temperature-salinity results are similar to those fouﬁd in
uniaxial tension. Dykins uses brine volume as the relevant va;iab1e
and finds a linear relation between strength and /U. Tabata shows
increasing strength with decreasing temperature at a fixed salinity,
which coincides with decreasing brine volume. These results are shown

vs. brine volume in figure 3.13.

ring tensile test—fresh water ice

The limited number of ring tensile results available for fresh
water ice indicate an increase in strength with decreasing temperature,
down to about -10° C, followed by a region of relative insensitivity

to temperature between -10° C and -35° C.”’3.I

ring tensile test—sea ice

1} load rate

Paige and Kennedy32 have studied the effect of load rate by test-
ing samples at various crosshead speeds. A typical curve of their re-
sults 1s shown in figure 3.14. As the crosshead speed is increased,
the computed strengths approach values comparable to those obtained in
uniaxial tensile tests. The speeds required to bring this about, how-

ever, far exceed those normally used for other ring tensile results.
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2) brine volume

Ring tensile testing has been used extensively to study the rela-
tionship between strength and brine volume, and represents the most
consistent study of any ice strengfh property. Table 3.1 shows the
strength-brine volume relationships which have been obtaéned by the
authors indicated. Strength is in kg./cm2 and brine volume is measured
as the volume fraction.

weeks]7 has studied the effect of the precipitation of NaC1‘2H20 by
conducting tests on laboratory ice formed from a solution of NaCl and
water. He found that below the precipitation temperature, Opp WS inde-
pendent of the amount of precipitate present and comparable to that for
fresh water ice. The results of Greystone and Lahg1eben33 indicate no

effect on strength with the precipitation of Na2304-]OH20.

3} geometry
Tests by Paige and Kennedy have indicated that ring tensile strengths

are not affected by increasing the diameter of the inner hole. Early

27,28 however, using a one-inch diameter hole,

results of Butkovich,
exhibit strengths Tower than those which seem to be typical for standard
ring tensile tests. LangTeben35 has found a consistent increase of
strength with depth, regardless of brine volume. From this he implies

an increase of strength with grain size, the other depth dependent vari-

able. Horizontal cores have yielded lower strengths than vertical

ones. 36



Table 3.1 Strength vs., Brine Volume Relations for Ring
Tensile Tests
Te™ 27PN (g sen?)
nvestigator a b Remarks
Greizﬁogzb:n 29.0 53.3 results adjusted tQ a common
g " temperature of ~10 C using .
results from fresh water
compression testslO
Weeks 17 24,7 51.5 tests on laboratory grown NaCl
ice (not actualoseawater)
0<T<21.2°C
31
Frankenstein 28,2 58.1 o< L4
6.7 0 o> L
Vinieratos
and Dykins 22,2 36.8 high load rate (20 in./min.)
75 (k=6)
Dykins 30.4 3.95 solid cylinder (Brazil test)




56
Brazil test
Very few results are available for the Brazil test. Those which
are available have been interpreted using K = 6, and as such show values -
stightly higher for those of equivalent ice tested by the ring tensile

test.3] Frankenstein3]

tests the K = 6 assumption by comparing Brazil
test results to companion ring tensile results and finds that using
K = 5.2 would make them similar. The brine volume dependence as repor-

ted by Dykins is shown in Table 3.1 along with the ring tensile results.

shear tééts

The results of shear tests vary with the type of test. Figure 3.1
shows the effect Of maximum shear in torsion on temperature, as reported
by Butkovich.10 Direct shear between two blocks was used in reference
23 to produce the results shown in figure 3.16. Voitkovsky mentions
results which show that the shear strength increases with increasing

27 used a double sheér method

compression on the shear plane. Butkovich
on sea ice, by putting the Specimen‘in a three-sectioned box with the
load applied to a movable middle section. Failures in the section be-
tween the two shear planes always occurred before the final shear fail-

ure, and the resulting shear failure stresses were considerably higher

than those fror other investigations.

in-situ cantileyer—fresh water ice
11,12,37

Frankenstein has tested in-situ cantilever beams of lake

ice with thicknesses ranging from 11 to 75 ¢cm. His samples consisted
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of clear ice, snow ice, and combinations. His values for strength
ranged between 2 and 8 kg/cm2 for load rates between 0.1 and 2.0 kg/
cmzfsec. For clear ice, the data shows greater strengths when the
bottom was in tension, and showed no significant effect of temperature
on strength., Small-scale beam test; on the same ice.gave values two
to three times higher than those for the in-situ beams. Voitkovsky S
reports strength results for in-situ cantilevers (referred to in
Russian as "piane keys of ice") which are similar to those of Franken-
stein. |

Brown5 suggests that there is a stress concentration at the corner
of the fixed end, and that the actual stress is increased by a factor
of 2.8, a value obtained from photoelastic analysis. Frankenstein12
has tested simp]& supported beams in place, and has found strengths to

be slightly higher than those for companion cantilevers, but not suf-

ficiently to justify the 2.8 factor.

in-situ cantilever—sea ice

In-situ cantilever tests on sea ice beams have shown no noticeable

15,40 Weeks and

differencé between push down and pull up results.
Assur]4 have presented the in-situ cantilever results of references 27,
15, and 40 in terms of /v as shown in figure 3.17. Tabata et al.
has found the strength to increase with increasing load rate for fce
sheets less than 30 cm. thick at temperatures close to 0° C, i.e., ice

sheets less with fairly uniform temperature through the thickness. These



Direct Shear

58

Reference 23
(fresh ice)

10 T

o1 /

5 .

~ shear force:
[y ] .
= o normal to ice
-~ s T | sheet

=

< x parallel to
5 : ice sheet

. 29 . )
v Dykins“~ (sea ice)
_ . ' : !
-10 -20 -30
Temperature{°C} '

Figure 3.16 Shear Strength vs. Temperature

_ ?
oisc(kg./cm.)

0 | ! L 3
0.7 0.2 0.3 0’4
)

Figure 3.17 In-situ Cantilever Strength vs. Brine Yolume

N’; 4-T

S -2°¢

g

"'l-.-’g 2~—

o L

. | . ) .
o 1o "1b.0 50.0
o (kg./cm</sec.)

Figure 3.18 In-situ Cantilever Strength vs. Load Rate (Sea Ice)



59

results are shown in figure 3.18, It can be seen that strength values

from in-situ cantilever tests are lower than those for any of the

small-scale tests.

E. Interpretation of Test Results

Scope
The basic purpose of a small-scale test is to obtain some informa-

tion about the failure of ice, which can then be applied to a full-scale
ice sheet proE]em. The first problem in doing this is that the stress
state experienced by the small-scale sample, and the type of failure
produced by this stress state, are both distinctly different from what
is experienced in the full-scale ice sheet. The second problem is that
" the interpretation of a small-scale test result relies on a knowledge
of the stress state in the sample. The complex internal structure of
ice, and the lack of understanding of the small-scale properties of ice,
make this knowTedge difficult to obtain. It should be emphasized that
the problem of interpretation is distinct from the problem of applica-
tion; i.e., having satisfactorily interpreted the results of a series
of small-scale tests does not imply that they are directly usable for
the prediction of the strength'of an ice sheet.

The basic attempt here is to interpret the small-scale test result;
i.e., what information does the test yield? This attempt wil] be foun-
ded upon the idea that there are some fundamental properties of ice

which manifest themselves in the small-scale test. The results of ex-
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tensive experimental studies are available. It is desired to utilize
these results to see if they suggest any intrinsic properties which
have heretofore been ignored in the analysis of the data. The identi- '
fication of these properties and their quantification via some sort of
physical-mathematical model will allow for a reassessment of test re-
sults aﬁd will shed further 11§ht-on the results that have been ob-
tained. This has been done in the case of brine volume (see chapter
11). This approach shall be pursued here. One would 1ike to know, for
exampje, if the variation of strength on a particular parameter is a
function of the type of test conducted or of the material being tested.
If the former is true, then one can guess just what intrinsic proper-
ties manifest themselves in thaf type of test but not in others. If
the latter is true, then something has been learned about the material,

and it can be assumed that that property will somehow exhibit itself in

other test situations and in full-scale behavior.

'Summary of Test Results

In the light of the test results just presented, the following gen-

eralities can bz made.

1. compressive strength

As expected, the strength of ice in unconfined compression far ex-
ceeds that found in any other type of test. The failure process, which
is accompanied by a high degree of internal cracking, suggest further

investigation.



61

2. tensile strength

Of the four predominant methods of tensile strength testing, the

following inequality seems to be the rule:

Ot 7 9g 7 9t~ %isc (3.7)

Typica1ly'for sea ice, ring tensile strength values lie between 15 and
30 kg/cmz, flexural strength values between 7 and 15 kg}cmz, uniaxial
tensile strength values between 2.5 and 8 kg/cmz, and in-situ canti-

lever strength values between 1.5 and 6.0 kg/cmz.

3. shear strength

Very little information has been obtained from shear strength tests
due to the limited results available, the variety of testing techniques,
and the fact that specimens do not generally fail in shear unless forced

to do so.

4, strength—temperature

With the exception of ring tensile results between -10° and -35° C,
all small-scale test results on fresh ice exhibit a marked increase of
strength with decreasing temperature, usually most prominent in the
range between 0° and -10° C (figures 3.5, 3.8, 3.11, 3.15). Independent
of its effect via brine volume, temperature seems to have no effect on

sea ice strength.

5. strength—brine volume

It is difficult to conclude anything other than the linear depen-

dence of strength on Vv, since almost all results have been fit in this
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manner (Table 3.1). The most convincing results have been those ob-
tained via ring tensile tests, and it is possible to have deduced the
/< velationships from these results. The results of other tests are

not so convincing.

6. strenqth—*qoad rate

As suggested in chapter I, the strength variable which takes on
the greatest range of values is the load rate. It is evident from the
results which have been presented that the effect of load rate has not
been clarified. Strength seems to increase with increasing load rate
in the low load rate regimes, while the opposite effect is observed in
the higher regimes. With the exception of the results of Jellinek
(figure 3.7), each test series has exhibited either one trend or the
other (see figures 3.3, 3.6, 3.7, 3.9, 3.12, 3.14, 3.18), The transi-
tion point (if one really exists) varies considerably depeﬁding on which

tests are considered.

7. strength—grain size

Although this effect has not been investigated extensively, there
are indications that grain size plays an important role. Butkovich
(compression), Jellinek {uniaxial tension), and Reference 23 (flexural)
all found decreasing strength with increasing sample size. The extremely
low strength results for in-situ cantilevers also coincide with this
trend. Butkovich (compression), and Langleben {ring tensile) found in-

creasing strength for larger grained ice. Dykins' resuits (uniaxial
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tension) show no such effect, while Peyton's results (compression and
uniaxial tension) go both ways, if depth in both of these cases is con-
sidered to be a measure of increasing grain size. In any event, these
results suggest a possible dependency of strength on the number of
grains per sample. This seems to be a reasonable variable for these

small-scale tests, where specimen size is not much greater than grain

size.

8. small scale vs. full scale

The results of in-situ cantilevers are difficult to interpret be-
cause of lack of understanding of the variaticn of properties through
the thickness. One thing that is apparent is the similarity in magni-
tude between in-situ cantilever results and uniaxial tensile resuits.
This suggests that the uniaxial tensile test yields a strength value
which is applicable to full-scale ice sheets. The dependency on rate

of loading, however, does not seem to agree for these two tests.

1

These observations invite a multitude of exp1anat16ns which can go
back and forth indefinitely. The remainder of this research is con-
cerned with the influence of two specific factors—time-dependent plas-
ticity and the éxistence of grains, and an attempt will be made to see

how these two factors can reconcile some of the existing results.

Effects of Plasticity and Grains

Time-dependent plasticity and the existence of grains are effects

vhich have generally been ignored in the interpretation of small-scale
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strength data, but which have been occasionally mentioned in the con-
text of explaining anoralous behavior. The exceedingly high ring ten-
sile results give a first indication that such effects are significant.\
These results were originally explained by the "eritical flaw" argu-
ment—that the smallness of the region of maximum stress in the ring
tensile test yields a lower probability of finding the critical failure-
producing flaw than in the larger area of, say, the uniaxial tensile
1:est.28 This is a Griffith-type argument based on a uniform distribu-
tion of flaws in an otherwise homogeneous material. This argument, how-
ever, does not seem to be relevant for a material as inhomogeneous as
small sample ice. A more relevant argument seems to be the fact that

in the ring tensile test, the maximum stresses are experienced by indivi-
dual grains {points A and B , figure 3.19) rather than by the polycry-
stalline aggregate as a whole. Failure then depends on the way in which
these individual grains carry the load, and the way in which the grains
along section AB distribute the Toad. _

The results of Paige and Kennedy (figure 3.14) suggest that the time-
dependent plasticity of individual grains governs the computed failure
Joad. The apparent load-rate effect is very 1ikely due to the miscalcu-
lation of the maximum stress as a resylt of plastic stress relief in the
highiy stressed regions, as suggested by Neve141 and depicted in figure
3.20. Lower load rates allow for greater stress relaxation and redistri-
bution, and heince result in a greater ervor associated with the glastic
stress computation, As Toad rates increase, the response becomes more

elastic and the copputed stress apnroaches a value nezar to that of the
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Figure 3.19 Grain Structure Under Ring Tensile Load
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Figure 3.20 Tensile Stress Distribution in a Ring Tensile Test
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Figure 3.21 Alternative Flexural Test
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uniaxial tensile strength.

The place of o, in the sequance of Eq. (3.7} is more difficult
to explain in this context. The first temptation is to explain this
effect as an overcomputation due to the neglect of plasticity, as was
just done for the ring tensile test. The only results available for
Tgp VS- load rate (figure 3.12), however, show a mild increase of
strength with load rate, similar to that found in uniaxial tension in
the same range (figure 3.9). This contradicts the plasticity argument.
A characteristic of the flexural test which makes it different from
the uniaxial and ring tensile tests is that the stress gradient lies
along the long axis of the columnar grain (see figure 3.2). Conse-
quently, only a small portion of each grain is subjected to the maxi-
mum tensile stress, with the opposite end of the grain subjected to
compression. This could very likely inhibit the sample from failing
at the uniaxial tensile strength.

Reference 23 mentions the results of flexural tests performed on
small beams of similar structure as those described herein, but with
the loading perpendicular to the column axes {figure 3.21). The results
are reported to be similar to those loaded parallel to the column axes.
This coincidence suggests that these alternate test results fit pro-
perly into the Eq. (3.7} sequcnce according to stress relief arguments.
It is suggesfed that future small beam tests be cut horizonta11y from

the jce sheet (as is currently done), but loaded in the horizontal

planc. A study of the effect of load rate for these types of tests
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should exhibit the strength-load rate characteristics of the ring ten-
sile test, _

It should be pointed out that the fact fhat the plasticity argu-
ments ascribed to ring tensile tests are not valid for flexural tests
is not contradictory. The former concentrates stresses on one grain,
while the latter distributes stresses across several. At the moment,
there is no reason to assume that the plastic behavior of the single
crystal and the polycrystal is similar. This observation, accomﬁénied
by the influence of single crystal plasticity on ring tensile results
implied above, suggests that further study of the plasticity of ice
single crystals would shed some light on the observed behavior of small
samples. A knowledge of single crystal properties would also allow f;r
the treatment of the small sample as the coarse aggregate of grains
which it really is.

A review of the plasticity of single crystals of ice is presented

in the next chapter.
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Chapter IV

THE PLASTIC FLOM OF SINGLE CRYSTALS OF ICE

A. Introduction

Since single crystals are going to be treated as distinct entities
in the analysis of polycrystalline samples, it is first necessary to
establish a genera! flow law; i.e., 2 relationship between stress,
strain, and time which is valid for all possible stress and strain his-
tories. The effect of load rate will be implied by such a relationship,
while the effects of temperature and salinity will affect the material
parameters. It will be kept in mind that such a law need only span a
;;gime which incorporates the stresses, strains, strain rates, and tem-
peratures experienced by single crystals in an ice sheet. For the pro-
blem outlined at the end of the last chapter, this regime is further
limited to that range of variables applicable to a small-scale strength
test. In view of the fact.that a good deal of the research to be dis-
cussed has been oriented towards explaining the flow of glaciers, this
point is important to keep in mind.

The elastic properties of single crystals have.been fairly well de-
fined. The hexagonal syumetry of the crystal lattice implies the exist-
ence of five independent elastic constants. These values have been re-

ported by Jona and Scherrer.66

B. Qualitative fspects of Single Crystal Flow

Description of Testis

The rost ~ioni Ticant research concerning the flow of single crystals
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of ice has taken place in the past 16 years. During fhis time, the
two basic types of ice which have been studied are natural single crys-
tals found in glaciers and artificial single crystals grown in the 1ab-
oratory. Both of these single crystal types are different from the
single crystals found in an ice sheet in both the method of growth and
in the iﬁpurity content. Natural single crystals of glacier ice are
desirable because of their purity and because of the reproducibility

42 Artificial single crystals, on

of the results obtained from them.
the other hand, approximate more closely the type of growth experienced
by single crystals in a natural ice sheet. In spite of these differ-
ences, however, it will be assumed that the basic characteristics of
the flow of ice single crystals can be deduced from these types of sam-
ples. The similarities between the results obtained fram glacier and

43 To this author's know-

artificial single crystals supports this view:
ledge, there has been no reported research concerning the flow of single
crystals of salt water ice.

The types of tests which have been performed consist of uniaxial,
beam bending, and shear tests. The qniaxia1 tests include both tension
and compression of cylinders and thin plates. The beam tests are per-

formed on simply supported beams with a concentrated load at midspan.

The shear tests are performed on blocks sheared on two opposite faces.

Geometry of Deformation

It has been known since the late 19th century that the most signif-

jcant aspect of ice creep is slip along the basal plane of the crystal.
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This type of deformation is visible to the naked eye, for largely de-
formed samples, as cylinders necking into tapes, or compressed into
segments sliding over one another43’44 (figure 4.1a)., Tests of small
single crystal beams by Nakaya45 have shown that single crystals de-
form like a deck of cards, with the deformation concentrated in dis-
crete layers (figure 4.1b).

Attempts were made by most of the early creep investigators to es-
tablish a preferred slip direction in the basal plane, similar to the
.s1ip directions found in most metals. From the viewpoint of atomic
structure, a likely slip direction would be one of the three <1120>
directions, due to the fact that these directions exhibit the highest
density of oxygen atoms.46 Experimental studies have shown, however,
that_the di;ection of slip a1ways seems to be in the direction of the
maximum resolved shear stress in the basal plane, regardless of the
orientation of the a-axes. Figure 4.2 shows the crystallographic nota-

tion which is being used here.

Creep Curve Characteristics

Almost all investigators who have investigated the transient creep
behavior for ice single crystals have found that whenever a component
. of shear stress exists on the basal plane, the resulting creép curve 1S
concave upward. Figure 4.3 shows a typical creep curve. This result
was originally thought to be due to the geometric effects associated

with tertiary creep53 but subsequent investigations showed that this
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Figure 4.2 Crystallographic Notation (basal plane)
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* Figure 4.3 Typical Creep Curve43
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was observed at strains well below those associated with geometric

nonlinearity. This creep curve is unusual when compared to the creep

of metals.

Steinemann46 teste& single crystals in shear and found that the
creep curve had two distinct regions— a "hard” region for strains
less thén 10% to 20% and a "soft" region for strains greater than 10%
to 20%, the transition being characterized by an abrupt change in slope.
He described this phenomenon as "work softening." The second stage
was found to terminate in a linear region of constant strain rate. Com-

43

pression creep tests by Griggs and Coles '~ yield curves similar to those

of Steinemann in their upward concavity but without the transition and

the terminal linear stage. Tensile creep tests by Jellinek and Bri1]48

have also revealed the accelerating creep rate. In references 43 and
48 the authors claim to have had difficulty in reproducing their creep

curves. Subsequent creep investigations by Butkovich and Landauer,49

50 81,52

Higashi et al.”" and Jones and Glen have all confirmed the idea

that a resolved shear stress on the basal plane produces an accelerat-
ing creep curve. Higashi et al. have found curves which terminate with
constant slope. In general, terminal portions of creeplcurves are due

to the combined effect of large deformations and the type of testing pro-

cedure.

For cases where there is no resolved shear stress component on the

48

basal plane, Butkovich and Landauer,49 Jei1inek and Brill "~ and Glen and

Perutzs3 have found initially decelerating creep typical of most metals,
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with average strain rates on the order of one hundredth of those found
for specimens oriented favorably for basal gTide.. Glen and Perutz have
explained this as due to a slignht misorientation of the basal plane in
the testing machine, while Butkovich and Landaver suggest that the creep

is due to mechanisms other than basal glide.

Stress-Strain Curves at Constant Strain Rate

51-and Waka-~

Readey and Kingery,s4 Higashi et a1.,50 Jones and Glen
hama55 have conducted stress-strain experiments at constant machine
crosshead speed. A1l of their resulting stress-strain curves showed an
initial linear portion leading to a maximum followed by a gradual de-
crease in stress, as shown in figure 4.4. 1In generai, the maximum stress
js a function of temperature ana strain rate. The most interesting as-
pect of this curve is the "yield drop" which leads to a "strain soften-
ing.” This is opposite to the results for low temperature metals, which
generally exhibit a strain hardéning.

Higashi et al. report that the slope of the initial linear portion
of the curve depends on the strain rate, a result which contradicts the
idea that the initial linear portion is due to rate independent elastic-
jty. This dependency has not been found by the other investigators.
Wakahama finds that only his curves for high strain rates exhibit the
yield drop, while the others retain the maximum stress with continued

_straining. His samples are thin plates 1 mm. thick, while the other
1nvestigators used cylinders about 1 to 2 cm. in diameter. Muquruma3?

has shown that the existence of surface layer imperfections has a ten-
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dency to lower the yield points and flatten curves. Wakahama's results
suggest that such imperfections might exert a greater influence on’

- smaller samples. Wakahama's results also imply that there is a transi-
tion from yield drop to constant yield stress with decreasing strain

rate.

Stress Relaxation at Constant Strain

Little attention has been given to the stress relaxation charac-
teristics of ice single crystals since these.characteristics represent
a strain history least likely to be experienced by a natural ice crys-
tal. The consideration of relaxation here, however, will give a more
complete picture of the general flow properties. Such test results

54

have been reported by Wakahama55 and Readey and Kingery. A typical

stress-relaxation curve is shown in figure 4.5.

Dislocation Models

Several attempts have been made to explain the observed plastic
deformation of ice crystals in terﬁs of the theory of dis]ocafions.
The most common dislocation model suggests that p]aétic deformation
is due to the motion of dislocations along the basal plane. Karhb47 has
explained the apparent lack of preferred slip direction by hypothesiz-
ing that dislocation motion takes place simultaneously along the 3y
LPY and a5 axes according to a power law stress-strain rate relation-
ship similar to that proposed by previous investigators {see next sec~
tion). He has shown that for values 6f the exponent n up to and in-

cluding 4, the maximum angular deviation between the maximum resolved
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shear stress and the maximum resolved shear strain is 2.9?, compared
to a value of 24° for a tetragonal crystal. One would not expect such
a small deviation to be observable in a typical creep experiment, and
hence the flow appears to follow the maximum shear stress.
A dislocation theory which has been frequently referenced is that

56 The theory was developed to explain the ob-

pr0posed by Johnston.
served creep and stress-ﬁtrain results for LiF. Since these results
pbear a resemblance to those found for ice crystals, it has been sugges-
ted that the flow of ice may also be explained according to Johnston's
theory. | _

Johnston begins by expressing the plastic shear strain rate Yp in

terms of the Burgers vector, b, the number of active dislocations, p,

and the velocity of screw dislocations, v, as

It

Y, = 2bpv, (4.1)

p

It is assumed that p is a function of the total amount of plastic
strain, Yp’ and Vg js a function of the resolved shear stress t. Ob-
servation of etch pits on the surface of crystals of LiF reveal the

suggested relationships to take the following form

p= orYp (4.2)

ve= (t/D)" (4.3)
where a, D, and n are constants for LiF. Substituting Eqs. (4.2) and

(4.3) into Eq. (4.1), Johnston obtains the following flow relation-

ship:
¥y = 2bay {z/D)" (4.4)
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The solution of Eq. (4.4) implies the existence of an initial strain
Yo associated with an initial density of mobile dislocations. Since

no suitable etchant has been found for revealing basal dislocations in

1

ice, equations (4.2) and (4.3) can not be directly estabh’shed.5 Never-

theless, the quantitative results presented in the next section suggest
that Johﬁston's theory is applicable to ice crystals.

Wakahama55 has sought to model his observed stress-strain behavior
by successive activation of Frank-Read sources on different planes with
different threshold stresses. This model reproduces only his stress-
strain curves with no yield drop, and not those typically observed by
other investigators. His theory, with some additional considerations,
might be able to incorporate the yield drop phenomenon.

Recent]y_some investigators have begun to study the problem of non-

> have observed short sTip line seg-

basaﬁ slip. Readings and Bartlett
ments perpendicular to the basal plane. They explain these as manifes-
tations of the cross-s1ip of screw dislocations on the basal plane.
Higashisg’59 has explained the higher yield stress and work hardening
found in non-basa) slip in terms of intersections of non-basal disloca-
tions. Dislocations on the {10T0) plane can easily intersect disloca-

tions on other prism planes, an occurrence vwhich tends to impede the

motion of these dislocations.

C. Mathematical Descriptions of Single Crystal Flow

This section presents some of the relations which have been observed

between stress, strain, and time for the creep, constant strain rate,
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and relaxation results presented in the previous section. The ultimate
purpose is ‘to obtain a flow Taw which most accurately reproduces all of

the results, and which is applicable to the study of polycrystalline ice.

Creep
Early investigators attempted to develop relationships between stress

and strain rate for the stationary portion of the creep curve. This por-
tion, referred to as secondary creep, is where the strain rate is minimum
and constant. The resulting creep curves produced some confusion since

in most cases there was no well-defined region of secondary creep. Never-

theless, the data was interpreted according to the following law:

¥ =kt | (4.5)

where k was observed to be a function of temperature. vy was taken as
either the minimum strain rate (tangent at zero time), the slope of some
straight line passed through the points, or the maximum strain rate
associated with some linear terminal stage. Table 4.1 summarizes some
of the results obtained.

Other investigators, realizing that there was no observable steady
state creep, attempted to express the strain as a function of time for

a given stress. A1l of the proposed expressions take on the form
y = C td (4.6)
where € is a constant depending on stress and temperature, t is time,

and q is a constant. Table 4.2 summarizes the results of these inves-

tigations.
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Table 4.1 Summary of Steady State Creep Results (?=an)

Investigator TemB.(range) Stress(range) k n
C kg./cm?)
Butkovich and (shear) -8
Landauer -4 to -6.5 .5 to 3.0 134x%10 2.49
Glen and Perut253 -6 1.45 to 2.9
(tension)
Higashi, Keinuma
and Maeb0 -4.8 to -40 12 to 60O
(bending) Kexp (-Q/RT) 1.58
Lavrov61 -3 to =23 (shear) 1.7 to 4x10—8 1.0
Steinemanﬁ -2.3 A5 to 2.2 'hard"
' 2.3 to &4
(shear') rooft!
1.3 to 1.8

Table 4.2 Summary of Transient Creep Results (Y=th)
Investigator Tempo(range) stress(range)- q
C (kg./cmg)
(tension)
Glen and Jones =50 3.5 to 6.5 1.5
Butkevich and (shear)
Landauer =5 5 to 2,0 1.7
Griggs and 43
Coles -1 to -18 2 to 14 2.0
(compressive)
Jellinek and ¢ (tension)
Brill -5 .5 2.0
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Constant Strain Rate

54 50 51

Readey and Kingery,” Higashi et al., made

and Jones and Gien

quantitative observations of the stress-strain relations for single
crystals at constant strain rate. Readey and Kingery begin with the

general relation:

'ﬁ«p =kyp (4.7)
For the case of constant total strain rate, and for n = 2.0, an analyt-
jcal solution is derived, which can be approximated by the following
relation for stress vs. total strain:
. 1/n

= (1

{ Ve oo (4.8)

T

for the region of the stress-strain curve past the maximum. Uﬁing this
relation and experimental data, it is concluded that n varies from 2.5
to 1.5 with increasing strain,.and that m is approximately 1.

Jones and G'len51 have analyzed their data according to Eq. (4.4),
derived from Johnston's dislocation model. They have worked under the
assumption that by adjusting the various parameters in (4.4), some agree-
ment could be reached between the observéd stress-strain curves for ice
and those predicted by Johnston's theory. Considering a uniaxial speci-
men of length 20, cross-sectional area A, Young's modulus E and cross-

head speed v the relationship between shear stress and total shear strain

takes on the form:

%%— =¢-8(/D)" (Cvy - ) (4.9)
where C = E/2A and B = 2ba/y,  The solution curves for Eq. (4.9) show

a shape which is rather insensitive to changes in a and D, but sensitive
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to changes in n and Yo? the initial strain. By matching the theoreti-

cal curves with their experimental curves, and using the same value of

s as that used by Johnston for LiF, they found n = 3.0, D = 1035 kg/cmz,

and Yo © 5 x 10'4. A1l of their tests were conducted at the same strain

rate (2.7 x 10'7/sec.) and at temperatures between -20° and -70° C.
Higashi, Koinuma, and Mae50 have studied the constant rate test in

terms of the initial slope and the maximum stress; They found the ini-

tial slope M and the maximum slope T, to follow the relations:

M= (MO + M]$) exp (E]/RT) (4.10)

1/n

T = Cy¥ exp (E2/RT) (4.1}
where E; = 8.4 Kcal/mole, E, = 10.4 Kcal/mole, n = 1.53, T is absolute
temperature and MO, Ml’ and C1 are constants. These tests were conduc-
ted at temperatures between -15° and -40° C and at strain rates between
1.3 and 25 x 10”7/sec. The increasing yield point with increasing
strain rate is characteristic of all stress strain results described
herein. The variation of initial slope with strain rate, however, is

difficult to explain.

Relaxation

54 55

Both Readey and Kingery” and Wakahama ™~ have developed quantitative
descriptions of their relaxation curves. Readey and Kingery have ana-
lyzed their data in terms of Eq. {4.7), specializing for the case where

vy = const (the definition of relaxation). They have treated the plastic
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strain on the right-hand side as the total strain in order to facili-

tate a solution, and the resulting equation is:

1= -Gky™" , (4.12)

where G is the elastic modulus in basal shear. The procedure of neglec-
ting the elastic strain on the right-hand side is questionable, since
relaxation involves the mutual interplay of elastic and plastic effects.
This is particularly apparent for the early portions of the curve,
where the deformation is almost totally elastic. _Consideéation of an
initial strain, however, as presented by Johnston, would increase the
validity of Eq. (4.12). |

Wakahama concluded his constant strain rate tests by holding the
strain fixed and allowing the samples to relax. His data fit the follow-
ing relation:

RNV A (7)) ¢t (4.13)
where t is measured from the time the crosshead stopped, Ty is the
stress at t = 0 (in his case, the yield stress), and Al is a function
of T, and temperature. For n = 2, the solution to Eq. (4.12) takes on
a form similar to Fq. (4.13). Since Egq. (4.12) is valid for relatively

large plastic strain, the coincidence supports the validity of Eq. (4.7).

D. General Flow Rule

Using the aforementioned results as a background, and keeping in

mind the ultimate aim of understanding the behavior of small sample
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strength tests, a stress-strain time relationship shall be proposed
for single crystal ice. If such a law can reasonably reproduce the
creep, constant strain rate, and relaxation characteristics just de-
scribed, then it will be assumed to be valid for arbitrary stress and
strain histories.

Certain observations should be made with regard to time scale.

First of all, the creep results which have been reported and the ana-
lytical expressions describing them, generally cover time spans of sev-
eral hours. At the moment the most significant portion of the creep
curve is the very beginning, since this represents the time span of a
small-scale test. A second observation is that the strain rates used

in the constan% strain rate tests are generally much lower than those
experienced by the polycrystalline test sample. It will be assumed, how-
ever, that the stress-strain characteristics described are still applica-
ble at higher rates. Finally, most of the action in a relaxation test
takes place during the early period;, where the elastic and plastic
strains are comparable, and hence the information supplied by these tests
should be reproducible by the proposed flow law.

We shall begin by first assuming that all inelastic deformation is
due to slip on the basal plane. Although this assumption seems obvious
from experiments on single crystals, it is not so obvious for a single
crystal surrounded by other crystals in a polycrystai. Basal slip is
geometrically inhibited by the censtraints of the surrounding grains,
and it has been suggested that in a polycrystal there are other mechan-

63

isms which control the plastic behavior of each grain. Included in
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these mechanisms are grain boundary migration, formation of small-angle
boundaries, recrystallization, and crack formation.64 With the excep-
tion of crack formation, these other deformation mechanisms are gener-
ally associated with greater time spans than those connected with small-
scale testing, Crack -formation has been associated with the stress
states caused by basal s1ip,65 and hence basal slip must be treated be-
fore crack formation. This subject will be discussed in the next two
chapters.

Since hydrostatic pressure has not been found to affect basal slip,
and since the influence of stresses normal to the basal plane on baéa]
s1ip has not been clarified,e3 it will be assumed that the basal plastic
strain will be directly related to the shear stress on the basal plane,

independent of the other stress components. The proposed relation has

the form

¥, = kvp 3 | (4.14)
Although this is the same as Eq. (4.7), a slightly different approach
will be used here. The first thing that is apparent from Eq. (4.14) is
that if no p1ast1c strain has occurred at any given time, then no plas-
tic strain will occur in the next increment in time, regardless of the
stress. Consequently, in order to apply this relation it is necessary
to assume the existence of an initial plastic strain, Yo This, as
Johnston points out, is equivalent to assuming an initial density of
mobile dislocations, and is a reasonable assumption to make. This is

a fairly obscure quantity to deal with, however, and hence it must be



86

treated as a free parameter to be adjusted for best data fit, as has
been done by Jones and G1en.5] The plastic strain developed and/or
measured in a test,whn , must be treated as distinct from the total
p]ﬁstic strain as follows:

Yp = Yom * Yo (4.15)
Representing the measured plastic shear strain as

=y - 1/G 4.16
Yon T Y7 7/ (4.16)

where vy is the total applied shear strain and G is the shear modulus,
Eq. (4.14) yields

(7 - /8)= klyg + v, - /6" (4.17)
Eqs. {4.14) and (4.17) have a1readylbeen jdentified with constant strain
rate tests.sa’sl' This involves replacing YT by vt, where Vv is now a
constant eqda] to the strain rate. Solution curves for Eq. (4.17} for
constant strain rate are shown in figure (4.6), along with the various
parameter dependencies, for m =1 and n = 2. It remains to apply Eq.

(4.17) to creep and relaxation.

Creep

In a creep experiment, samples are assumed to be loaded instantane-
ously to a stress v and immediately respond with a strain 1/G. The stress
is then held constant while the specimen deforms plastically. Since the
elastic response is constant, the quantity generally considered is the
measured pTastic strain. Using Eqs. (4.14) and (4.15), this is expressed

as:
= Ky + YO)’”T" (4.18)
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where T is now a constant. As will be shown, for 0 < m <1, the re-
sulting creep curves are all concave upward, similar to those found in
the previously described investigations. Consequently, the minimum

46

creep rate occurs at t = 0, where Ypm = 0, Steinemann  measured the

minimum creep rate as a function of stress, and found the relation

(. ) et - (4.19)
P min
Eq. (4.18), for Yom 0, yields
(v. ) =kgt" (4.20)
PP min 0

which is equivalent to Steinemann's results. Glen and Jone562 found
the strain rate of several tests to be proportional to,rn at a given
strain, a result which also follows from Eq.-(4.18). As shown in Appen-
dix A, an analysis of the creep results of Higashi, Koinuma,land Maeﬁq
shows that the stress dependence'associated with their constant slope
portions and with their "reciprocal incubation times" is also the same
és that of Eq. (4.18). Therefore it is safe to assume that n used in
Eq. (4.14) is equivalent to that found by previous creep investigators,

An appropriate interpretation of m is more elusive. Eq. (4.18),
solved for the measured plastic strain vs. time, yields:

1/1-m

- [(1-mke™ + v} ™ -y, O<m<] (4.21)

Ypm 0

on = Yo lexp(ke't) - 1] m= ] (4.22)

The creep investigations summarized in table 4.2 used an equation of the

Y

form v o« t (4.23)
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where q took on values between 1.5 and 2.0, Although Eq. (4.23) implies

a zero slope at t = 0, most exhibited creep curves do not have this pro-
perty. It must be assumed, theretore, that the curve fit was intended

to cover a broad time range, with no particular attention to t = 0. For
the case where m = .5, it should be noted that Eq. (4.21) approaches

Eq. (4.23), with q = 2.0, as t increases. Such a statement must be quali-
fied in terms of the magnitudes of k, ", and Yo to see if the relevant
time scales overlap. The same kind of treatment can be generalized for
arbitrary m between 0 and 1.0. Unfortunately, lack of knowledge of Yo
prevents such an ana1ysis. At the moment,_theh, there is no preferred

choice for m.

Relaxation

Relaxation implies the application of a fixed strain and observing
the decrease of stress with time. Eq. (4.17), specialized for relaxa-

tion, takes on the form:
T = - Gk (YT + Yo T T/G)m'rn (4.24)

where Y1 is now a constant. Since this equation is difficult to inte-
grate, special cases will be noted. For the early portions of the curve,
where the applied strain is mostly elastic (i.e., Y7 % 1/G), Eq. (4.24)

yields:

Tnll = (n-1) Kyt + (Gyp)' " (4.25)

For the later regions where the applied strain is mostly plastic (dis-

cussed earlier}, Yo is replaced by v, + vg in Eq. (4.25). These two
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forms are similar to those observed by Readey and Kingery (Eq. (4.12))
and by Wakahama (Ea.(4.13)). This suggests that Eq. (4.14) suitably

describes the relaxation behavior of ice crystals.

Temperature Effects

It has been generaily implied that the proportionality constant in
the various flow relationships is a function of temperature. Therefore
it will be assumed that the flow modulus k = k{T). Readey and Kingery

found the relationship to be of the following form:
k(T} = k exp (-Q/RT) (4.26)

where Q = 14.3 Kcal/mole, R is the gas constant and T is absolute tem-
perature. An analysis of the creep results of Higashi et a].so in tefms
of Eq. (4.21), as shown in Appendix A, reveals the same result with

Q = 15.8. Eq. (4.26) reveals k to be highly temperature sensitive, as
can be seen from the fact that k(-3° C) = 24 x k (-33° C). This rela-
tion suggests a starting point for future aha]ysis of temperature effects

on small-scale sample strength.

Salinity

1t is suggested that the effect of salinity (or brine volume} can be
incorporated into the constant k. This can be done both by correlating
the results of polycrystalline models (see next chapter) with stress-
strain-time tests on polycrystalline samples, and by a theoretical model.
One possible theoretical approach is to use the geometric brine pocket

model of Weeks and ,~"\ndc-r550n15 and to determine the effective modulus ke
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of the composite material of ice and brine. A similar treatment would

also be applicéble to the elastic constants.
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Chapter V

MODELS FOR POGLYCRYSTALLINE BEHAVIOR

In this chapter the results presented in the last chapter will be
used in the formulation of models to describe the behavior of polycrys-

tals, which will be applied to the conditions of small-scale strength

tests.

A. Deformation and Failure Mechanisms in Polycrystalline Ice

»

As was mentioned in the last chapter, of the several proposed sin-
gle crystal deformation mechanisms in polycrystalline ice, basal slip
has been chosen because it is most 1ikely to prevail in the small-scale
strength test and because it is most readily quantifiable. The ques-
tion of the effect of elastic anisotropy should first Be mentioned.
Goetze73 suggested that elastic anisotropy causes stress concentration
at gréin boundaries which induces brittle failure. The values of the
elastic constants,GS hoviever, indicate that elastic anisotropy is not
very pronounced, and, in the light of chapter IV, plastic anisotropy is
the more prominent directional characteristic,

Detailed investigations of the single crystal deformation and failure
mechanisms in polycrystalline ice have been conducted by Go]d.65’67’68
His investigations involved the study of samples deformed in compressive
creep at -9 to -10° C, with the load perpendicular to the columnar

grains. His experimental observations and conclusions can be summarized

as follows:
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The fact that single crystals slip only on one plane tmplies that
there are only two independent s1ip systems in a three-dimensional
situation and one independent s1ip system in a two-dimensional situ-
ation. TayTorGg has shown that for an arbitrary change of shape at
constant volume {or area), five independent slip systems are re-
quired in three dimensions and two are required in two dimensions.
This implies that individual ice grains cannot accommodate an arbi-
brary change of shape in plastic deformation. The tendency to slip,
accompanied by the geometric restrictions of the surrounding grains,
causes the development of large stress differences from grain to

grain, and of high stress concentrations at the grain boundaries.

The nonuniform internal stresses which develop as a result of the
above behavior are responsible for the occurrence of internal cracks
which are observed in compression tests to occur at loads well below
the failure load of the sample. In other words, cracking is re-
quired to accommodate the required deformation. Figure 5.1 shows

internal cracking in compressive samples.

This cracking occurs well before the other deformation mechanisms,

described earlier, take place.

Cracking occurs primarily within the grains, and, at low loads,
these cracks form and then do not propagate. The most frequently
observed crack orientation is parallel to the basal plane, with
cracks perpendicular to the basal plane taking second place. In a

study of 407 transcrystalline cracks, 206 were paralliel to the
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Figure 5.1 Cracking Activity in Compression - Four
Different Stages of Crack Development (Gol

d67)
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basal plane, 106 were perpendicular to the basal plane, and 14
were either one or the other.65 In the same study, of 121 grain
boundary cracks observed, 85 occurred between grains whose boun-
daries were either paraliel or perpendicular to the basal plane of
dne or both of the grains making up the boundary: Figure 5.2
shows photographs of ﬁ]astically-deformed grains which have cleaved

parallel and perpendicular to the basal plane.

Cracks form due to tension across the above-mentioned planes caused

by the nonuniform stress field.

The formation of cracks causes stress redistribution in the sample.
If the load is applied for a sufficient Tength of time, continuous
cracking occurs, causing a continuous redistribution of stress, un-
fil it is finally carried by those grains with basal planes paral-
el to the direction of maximum shear. The accelerating creep on
these planes (described in chapter IV) terminates in a plastic fail-
ure of the sample. Experiments by Gold show, therefore, that coﬁ-

pressive creep samples fail at loads far below those achieved in

" rapidly conducted strength tests (see also Kingeryzs).

The above observations are very enlightening, and they strongly sug-

gest that the modeling of palycrystalline ice in terms of single crystal

properties would be a very fruitful approach. Of pdrticu1ar interest

would be to quantify these nonuniform stress states for the purpose of

predicting cracking and ultimate failure. Such information, in fact,

is what is required for the interpretation of small-scale sample results.
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Figure 5.2 Plastic Deformation and Cracking in a Single

Crystal of a Polycrystalline Sample (Go'ld)65

Eb) Cleavage parallel to basal plane
a) Cleavage perpendicular to the basal plane
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It should be noted, before continuing, that a good deal of theory
has been developed for predicting the behavior of a polycrystal from
single crystal properties.71 This work has been primarily concerned
with predicting the stress-strain behavior of the polycrystal from
that of the single crystal. The type of single crystal stress-strain
behavior implied by these theories {generally applicable to metals)
does not embrace that observed for ice. In addition, these theories
seek results for a fine grained polycrystal (continuum III, chapter 1I).
At the moment, then, these theories do.not seem applicable to the inter-
pretation of small-scale strength tests, nor, i. fact, to ice in gen-

eral.

B. A Two-Grain Model

A first approximation to polycrystalline behavior can be obtained
from single crystal properties by considering two grains of different
sizes and orientations located in a small samp]e72 (figure 5.3}. For
simplicity, a uniaxial, tensile test, subject to a constant crosshead
speed &, will be considered. Due to constraints from the neighboring
grains, and the conditions of the test, the tﬁo grains are considered
to be subject to a constagt rate of strain v = 8/ £in the direction of
the applied load, where & is the length of the sample. The purpoée here
is to show how the total load carried by the two grains can vary with
the crosshead speed.

The'force-disp1acement character of each grain is represented by a

spring-dashpot system. The lateral interaction between the two grains
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is not considered in this model. The force, Fi’ in each spring-dash-
pot system corresponds to the applied strain, which, by assumption, 1s
the same for both grains. The material parameters k, G, and y, are
assumed to be the same for both grains, Using Eq. (4.14) withm -1,
the force-deformation relationship for each grain takes the form (see

Appendix B)

dF . Gk Fs

1 = LI -y " =

3 G, 7 (8 +8; Gi)Fi i=1, 2 (5.1)

where
Gi-= ZAiG
Ai = cross sectional area of grain i
sin2g,

k-i=( 2A——1 -}k

Yo
41 7 $Tnzs;

i

85 = angle between the basal plane and the plane perpendicular

to the specimen axis

This equation is the same as Eq. (4.17), with a slightly different
definition of variables. With the solution curves of figure 4.6 in
mind, proposed force-deformation curves for grains 1 and 2 are shoun
in figure 5.4.

Due to the particular basal plane orientation, grain 1 is favorably
oriented for plastic flow while grain 2 is not. It is expected that in
any given sample there will be some distribution between favorably and
unfavorably oriented grains. As a result, k] is much greater than k2‘
This has the effect of giving grain 1 a lower yield point than grain 2

on the force deflection curve (see figure 4.6a). The different Ai also



101

affect the ki values, but not as strongly. The different Gi values
change the initial siopc Lut do not have much influence on the plas-
tic properties. The different &, values have the opposite effect of
k; on the yield point, and tend to flatten the after yield curve for
the less favorably oriented grain. Since n > 1, the kT influence on
the yield point will predominate.

It is now assumed that failure of the two-grain system occurs when’
grain 2 fails. This is a reasonable assumption, since it is clear from
figure 5.4 that grain 2 will carry the brunt of the stress.Also, it was
mentioned earlier that failure due to tensile stress across the basal
plane is the most frequently observed grain failure mode. The failure
load F; is a function of Az and perhaps temperature and salinity. It
is assumed that F; does not depend on the load rate. F; corresponds
to a displacement 5;, and the total load F* at failure is the sum of
the ordinates of the two curves at 6;.

The effect on F* of increasing the strain rate v is now examined.
At increased strain rate vl, F; is still located on the same point of
the grain 2 curve, but the value of Fy at the same displacement has in-
creased; hence it can be seen that the total load carried by the two
grains increases with increasing strain rate. When the rate becomes
sufficiently high, both grains will be in their linear regions, and
subsequent increases in strain rate will not affect the load capacity.

The above phenomenon for two grains is just as likely to occur for
the several grains comprising the cross section. If the failure is con-

trolled by one grain {as is likely considering the relatively small
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number of grains in the cross section of the average tensiie Specimen),
the conclusion follows in the same way. If several grain failures are
required for ultimate failure, then one can say that internal cracking
begins at higher loads with higher strain rates. Since internal crack-
ing is required to precipitate failure, it 1s safe to conclude that
higher strain rates will result in higher failure loads.

The conclusion just arrived at coincides with the experimental re-
sults for uniaxial tensile tests (chapter III, uniaxial tensile test
results) . Exceptions to this seem to occur at load rates higher than
those for which the strength was found to increase with increasing rate.
This suggests that once the load rate reaches the point where all the
grains are in their Tinear regions at failure, a rate mechanism other
than plasticity controls the failure load. -

Another conclusion which can be drawn from this grain analysis con-
cerns the nature of tensile and compressive failures. The faflure of

“one grain in a tensile specimen causes a sudden increase in the tensile
field supported by the remaining grains. Although their load carrying :
capacity increases as a result of the sudden increase in strain rate,
the fact that tension controls failure makes it unlikely that the re-
maining grains will be able to withstand the incrgased load. Hence ten-
sile failures are abrupt, and there is no time to observe the internal
cracking. Compression failures follow two different.patterns. At Tow load
rates, the tension set up by inhomogeneous deformation is gently re-
lieved by the formation of cracks, and the specimen continues to support

an increasing load. At high load rates, an internal tensile crack can
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can precipitate an {nstability which cannot be relieved by plastic de-

formation. Hence, a gradual shear failure occurs in the former, while

an abrupt bursting occurs in the latter.

C. A Two Dimensional Finite Element Model

The ability to explain an observed strength phenomenon from single
crystal properties encourages the development of more refined models
which can deal quantitatively with some of the more complex situations
associated with small-scale tests. For this purpose, a finite element
model was developed.

At first glance, the finite element method is a natural for a poly-
crystalline analysis, since the grains themselves are "finite elements.”
The idea of treating one grain as one element, however, was discarded
early in this research because the available elements have limitations
in their geometric flexibility. and because every internal node in
such an analysis would represent the intersection of at least four grains.
It was felt that these factors would bias the analysis. Instead of the
one-element, one-grain approach, each grain was assembled from several
linear square and 45° triangular elements. To facilitate the analysis,
the division of the grain into such elements was programmed into the
computer analysis. This restricted the choice of grain node points to
1ie on a grid equal in size to the element width.

The two dimensionality of the program fits in nicely with the treat-
ment of columnar grains. The ring tensile and uniaxial spécimens of

figure 3.2 are readilv modeled as plane stress or plane strain problems,
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depending on the sample thickness. For the flexural test, the extreme
fiber can be treated to be in plane stress.

Figure 5.5 shows a flow chart of the procedure used, and Appendix C
presents the matrix equations upon which the analysis is based. This
method is an extension of the basic finite element method for an elas-
tic continuum, which is reviewed by Zienkiewiﬁz.74

The elastic constants used in the analysis are those presented by
Jona and Scherrer®® for ice single crystals. From the results presen-
ted in chapter IV, a value of n = 2 was chosen, while m=1'was arbitrarilv

used because it coincides with the plotted curves of figure 4.6.

D. Results of the Finite Element Analysis

The most reasonable problem to deal with is the effect of load rate
on tensile strength, since this is the problem analyzed in section B
of this chapter. It was desired to see whether or not the conclusions
“arrived at using the two-grain model could be verified by the finite
element approach. This is a necessary verification, since the two-grain
mode}, and the conclusions reached through it, might be altered by the
general interaction between grains and by the nonuniformitiy of stresses
in the grains.

Figure 5.6 shows the geometry of the model which was used. This
model represents a uniaxial specimen subject to a constant strain rate
v. The thickness was taken as 0.1 inch. Figure 5.7 shows the resulting

force-deflection curves of this model for different values of v. As ex-
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Figure 5.5 Flow Chart of the Finite Element Method
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pected; the stress-strain curves for higher values of v are more linear
than those for the lower v values. The curvéture changes in the force-
deflection curves are due to the behavior of yielded grains, an example
of which is shown for point B in figure 5.8. Typically, the attempt

of a point in a grain to yield in the direction of applied displace-
hent is thwarted by the constraints of the surrounding material in the
grain, which in turn is constrained by the neighboring grains. Hence
it appears that the point can not decide whether or not to yield. This
is a basic feature which is revealed by the finite element method, but
not by thé spring-dashpot model.

For the purpose of predicting the load at failure, it is observed
from the program output that point A in figure 5.6 experiences the most
severe tensile stress across the basal plane. It {s proposed, there-
fore, that failure initiates when this component reaches a critical
value. Figure 5.9 shows the relation between basal tensile stress and
crosshead displacement at point A for different strain rates. It is ob-
served that for most of the test, the curves practTca11y coincide. For
the purpose of illustration, an arbitrary failure stress for this point
is assumed, coinciding with & = 0.07 in. Fromfigures 5.9 and 5;7, a
relationship between failure load aﬁd strain rate is obtained, and is
plotted in figure 5.10. This compares favorably witﬁ the uniaxial ten-
sile results of references 23 and 20, as shown in figures 3.7 and 3.9
respectively. It is difficult to compare the strain rate regime here
to the load rate regime in these references because of the uncertainty

in the material properties used in this analysis. It is clear, however,
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that the behavior shown in figure 5.10 will always occur regardless
of the material parameters, because it is a basic property of single
crystal plasticity.

The distribution of stress through the section at a fixed displace-
ment for different crosshead speeds is represented in figure 5.11. As
suggested by the experimental studies of Gold, which were described
in section A of this chapter, the nonuniformity of stresses is a func-
tion of plastic flow. Here, the nonuniformity is more pronounced at
the lower speed, where plasticity effects are more pronounced.

For variety, the same model with different Lasal plane orientations
was simulated at v = .02/sec. The resulting force-deflection curve is
shown along with the others in figure 5.7. Although this curve is dif-
ferent from the other curve at v = .02/sec. due to the different grain
orientations, the nature of the curve is basically the same. The yield

behavior of this sample is interesting to note.
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Chapter VI

SUMMARY _AND COMCLUSIONS

Summary

1.

The determination of the strength of ice sheets requires a better
knowledge of the strength'of ice and its dependence on environ-

mental parametefs and loading rate.

The existing small-scale strength test results do not supply a
sufficient amount of information to make them useful in the de-

termination of the strength of ice sheets,

The smaliness of these tests compared with ice sheet dimensions;
the unclear nature of the effect of load rate; and the consist-
ent dependence of strength values on the typé of test employed

suggest alternative means for analyzing the data.

The coarse internal structure of ice coupled with the highly
directional aspect of single crystal plastic flow imply that the

sample material can not be treated as homogeneous.

The apparent load rate effect found in ring tensile tests in-
dicates that further investigation into single crystal plasticity
would enlighten some of the anomalous results observed in small-

scale strength tests.

Single crystal plasticity has been found to be deminated by basal
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glide. An analysis of the creep, constant strain rate, and relaxa-
tion results on single crystals of ice By various authors yields
the following relationship between the resolved shear stress and

the applied shear strain on the Basal plane.

(yp = T/6) = k {rp + ¥y - 7/6)" 7" (4.17)
where
Y; = total applied shear strain
1T = rasolved shear stress
Yo © initial strain
G = shear modulus
k = “flow modulus"”

0< mgl; 1.5< n <4.0Q

The results of Readey and Kingerys4 concerning the dependence of
k on temperature are confirmed by using Eq. (6.1) to analyze the

60

results of Higashi, Koinuma, and Mae. The relation has the form .

k=k exp (-0/RT)

where
k' is a constant

0 is approximately 15.0 kcal/mole
T is absolute temperature

R is the universal gas constant

Single crystal deformation mechanisms observed in compressive

creep tests of columnar polycrystalline ice suggest that an ice
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sample should be modeled as an assembly of single crystals with

random orientation, each exhibiting the stress-strain-time behayior

of Eq. (6.1}.

The treatment of two grains modeled by springs and dashpots shows
how the failure stress of a unfaxial tensile specimen increases

with increasing load rate.

A finite element model, treating a test sample as an assembly of
grains, 'simulates the character of stress inhomogeneity due to
single crystal plasticity. In a uniaxial censile test simulation,
the assumption of sample failure due to basal cleavage of the most
critically stressed grain leads to a relationship between failure

Joad and strain rate strikingly similar to those obtained in actual

' uniaxial tensile tests. The strain rate (load rate) regime in

which this relationship is applicable depends on the material con-

stants, which in turn depend on temperature and salinity.

The Finite Element Method is a powerful tool for analyzing the
behavior of a polycrystal from single crystal properties. Although
such an analysis may be considered academic for fine grained poly-
crystals, it is a very real approach to understanding the results
of small-scale strength tests on ice, and, in general, to the
study of ice mechanics. Some suggestions as to its possible ap-

plications are presented in the next chapter.
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Conclusion

It has been shown that the mechanical properties of fce which
manifest themselves in a small-scale strength test can be understood
by considering the plastic properties of ice single crystals. Two
models have been presented which, by considering the sample as an
assembly of grains, are able to predict the increase of tensile
strength with increasing load rate. The use of such models can be

extended to study a wide spectrum of ice mechanical properties.
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Chapter VII

PROPOSALS FOR FUTURE RESEARCH

The use of the models presented herefn have only scratched the
surface of the wide expanse of problems to which they are app]icabTe.
In addition, some other possib]é résea?ch areas have come to light
in this study. These, plus some proposed ana1ytfca1 model studies,

are listed below.

Experimental Studies

It seems that the potential use of the Brazil test fs much more
promising than has been generally assumed. The problems surrounding
its previous use have been created partly because of the desire to
match ring tensile results. The ring tensile test, on the other hand,
_provides a poor index for bulk ice strength, and its continued use for
such a purpose is not recommended. It may, however, provide some
interesting information concerning single crystal properties.

A study of small beam flexural tests with the load applied in the
plane of the ice sheet rather than perpendicular to {t should supply

some correlation with ring tensile results.

Single Crystal Properties

An analytical treatment of the effect of brine volume on single
crystal elasticity and plasticity, similar to that which has been done
for strength, is recommended. This should involve the treatment of

the single crystal meterial as a composite of ice and holes. Flasticity
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solutions exist1g for the stress distribution associated with a regu-
lar array of holes. Using an energy approach, this can be applied to
the determination of the effective elastic moduli. Similar logic

might be applicable for the determination of an effective flow modulus.

Spring-Dashpot Model

The qualitative discussion of the spring-dashpot model can be quan-
tified using Eq. (5.1). This can lead to the treatment of N grains,
and relationships between strength, rate, and N would be interesting
to see, in the light'of the size effects which have been reported.
Another refinement would involve introducing'some kind of lateral con-

nection between spring-dashpot elements to model the lateral interac-

tion of grains.

Finite Element Model

The most interesting potential application of this model is to the
treatment of.internal cracking. Grains reaching a threshold tensile
stress across their basal plane can be programmed to "crack." This
occurrence can be modeled by a change in the grain rigidity matrix.

It would be very interesting to compare the results of such a study to
the detailed experimental crack analyses of Gold.

The ring tensile test can be modeled by the method presented in
chapter V, for the purpose of determining the relevant grain threshold
stresses which are required to simulate observed strength results.
Simulation of creep, stress—strafn, and relaxation tests on polycrystal-

line samples, and the comparison of these simulations to actual test
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results can lead to a better understanding of the material properties
of the single crystal. The Brazil test can also be modeled using the
method presented here, to see if the predicted uniform tensile stress
under the Joad is actually realized in the tect sample. Effects of
temperature, salinity, load rate, and grain size can be studied in

all of these cases.

Ice Sheet Strength

Getting back to the original problem, there are some indications
that the mechanisms discussed here have some bearing on the bulk ice
behavior in an ice sheet. This author has observed films, taken by
the Cold Regions Research and Engineering Laboratory (CRREL), of a
cylindrical pile forced against an ice sheet. These tests simulated
the forces exerted by an ice sheet on a structural support. It is ob-
served that the application of the load is accompanied by the gradual
whitening of a circular region ahead of the pile. This whitening is due
to the formation of internal cracks, the same phenomenon studied by Gold.
The increased whitening is accompanied by a gradual decrease.in the
slope of the force-deflection curve.70 The force dropped off when the
white material disintegrated, and it did not pick up until the pile
had pushed 1t$ way through the disintegrated materia] to the rim of
the circle, where the ice was once again solid. Having done this,
tﬁe entire process was repeated. The load, therefore, was found to be
periodic, and the magnitude and period was a function of the stress

state in the ice sheet and the internal craking of the ice. This
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periodicity was mentioned in chapter I in connection with ice forces

observed on offshore structures.

The prediction of the above behavior using the methods described
herein is a feasible research direction. This i{s not to sa; that
one should model an ice sheet by treating every grain. The methods
which have been discussed, however, can be used to describe the bulk
properties of a crystal aggregate, properties which can be used in

the stress and failure analysis of an ice sheet in contact with a

structure.
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Appendix A

The Interpretation of the Results of Higashi, Koinuma, and Mae60

in Terms of Eq. (4.14).

Strain

-
-
- e e e o w

Higashi et a1.%0 have reported the steady state strain rate ?S
and the incubation time ti to behave according to the following re-

lationships:
K1Tr exp (-Q/RT) (A.1)

Y
s

It will be assumed that this constant rate region follows a region

il

KzTr exp (-Q/RT) (A.2)

describable by Eq. (4.14). Hence these two relationships can be
analysed in terms of Eq. (4.21). It will also be assumed that the

constant rate portion of figure A.1 occurs at a Jarge enough time so

that 1/1-m
(A.3)

- _ n
Ypm = Yp = L{1-mlkT't]
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This is of the same form as the proposed powek law relationships, and

hence, for simplicity,

g=11m | | (A.4)
{A.3) becomes |
] .
y = (g) 19 ¢9 =t (A.5)

where subscript p has been dropped. §S and ti are related as follows:

i Tsti = ¥, FA.S)
Using (A.5) for v, and +s’ the following is obtained from (A.6)
t = 6’9_1 t; | | (A7)
From (A.1) and (A.2), it is observed that
L -
Ys = EEE; - (A.8)

Substituting (A.5), (A.7), and (A.8) into (A.6), the following is

obtained .
¢-1 (M -
¢ = (g-1) [’K’] £ y (A.9)
2

Recalling the components of C in Eq. (A.5), and expressing ti in terms

of (A.2), one obtains

-~

(59" = (@1 () K] <" exp (-a@/RT) (.10)
2

or, equivalently
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MPRLNL

%, Kérr exp (-Q/RT) (A.11)

£ = (1)

Two observations are now apparent. The stress dependence r in Egs.
(A.1) and (A.2) is equivalent to the stress dependence n of Eq. (4.14).
Secondly, k is of the form '

k =k exp (-Q/RT) (a12) "

which is eguivalent to the temperature dependence found by Readey and

Kingery {see Eq. (4.24)).
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Appendix'B

Derivation of the Force Displacement. Relation for the Spring-Dash-

pot Representation of a Grain.

We begin with the basic flow equation, with m = 1.

(§T - 1/6) = k (YT * Yy - /6" ' (B.1}

It will be assumed that yT and T represent mean strains and stresses
at the section considered. Hence, they can be expréssed in terms of.

the average longitudinal strain and stress, ¢ and g, as:

Y1 °© g+5in2o (B.2)
in26
v =0 (S0 (.3)

Since the case of constant strain rate is being considered, e is repre-
sented as vt. For the spring-dashpot model, o is represented by F/A,
~and § represents ¢. Noting these substitutions and those of Eqs.{B.2)
and (B.3), and changing independent variable from t to &, Eq. (B.1)

yields:

n n

_ . ,sin20 Yo F y(F
S G-l U

v
V" 2GR

t:n.lo.
O |™

Each grain has a different area Ai’ and a different orientation ei‘
Equation {B.4) for the spring-dashpot system representing grain 1 has

the form

K. F.
i i _ i n ~
G.. (s + &4 Gi) (F.) (B.5)



where Gi = 2A16
Yo
61 sinZe
sinZ6. n
k. = ( 1
i ZAi

This is the relation used in chapter V.
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Appendix C

Two-Dimentional Finite Element Analysis of @ Polycrystalline Assembly

of Elastic-Time Dependent Plastic Grains.

£lastic Analysis

Each grain is composed of square and 45° triangular elements.
The division of the grain into these elements is part of the computer
program. The assembly of these elements into a grain stiffness ma-
trix, KG’ 1s.acc0mpiished by normal finite element techniques. Grain
nodes are programmed to be numbered SO that all of the boundary nodes
come first, and the internal nodes second. Hence, the grain dispiace-
ment vector, UG’ and the stiffness matrix are partitioned as follows:
Ug Keg ¢ Kar

U, = {--—- K, = [==—=="- e (c.1)

Y1 I8

B B
---- (c.2)
I 0

where Pg represents the force vector associated with the boundary nodes.

Eliminating UI from Eqs. (C.2), the following stiffness equations is

pbtained:

c -

KBB UB = PB {C.3)
whare c 1

Kgs = Kgg = Xg1 K11 Kig (c.4)
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KEB is referred to as the condensed stiffness matrix of the grain.
These can then be assembled with other grain condensed stiffness

matrices by usual finite element methods to form the stiffness matrix

of the polycrystal.

Plastic Flow

The total strain of an element is divided into two parts, the
elastic strain vector e and the plastic strain vector Ep‘ It is
assumed that at any point in time the total stress is entirely due
to elastic strain. The plastic strain at each time step is treated

as an initial strain, and hence

o =D0{(e - ep) (C.5)

where D is the elastic rigidity matrix, o is the stress vector, and
¢ is the total strain vector. According to the finite element method,
the element displacements and strains are expressed as functions of

the element nodal displacements, Uc ., as

E.n

B UE,n (C.7)

e

where N and B are functions of x and y in a plane problem. The

principle of virtual work states that

IGE:T- odA = I :SuT' p ds (c.8)
A S
where p is the force per unit length applied to the boundary, A is the

elerent and s is the portion of the element boundary along which forces
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are prescribed. Substituting the stress-strain re1ations (C.5) and

the element expansions (C.7), the Teft-hand side of (C.8) becomes

T LT
fauE’ B' D (BUE’ - eo) dA {C.9)
n n
Letting ’
JBTpBdA = K (C.10)
A
(T
B De dA= P (c.11)
. A
(€.9)becomes
auE,n [Ke UE’n -P] (C.12)

where KE is the usual element stiffness matrix and Pp is the load
vector due to plasticity.

In assembling Eq. (C.8) for the entire grain, the contributions
of the right-hand side cancel along the contiguous element boundaries,
leaving a grain boundary force vector PB. The resulting equation is

an altered form of Eq. (C.2) and has the form

» K
Kgg 1 “BI Ug Ps Pep
e i G SV NV SO SO - (c.13)
Kig 4 Kol Y 0 PIp
1

where PBp and PIp comprise the grain load vector due to plasticity
which is assembled from the element Pp matrices. Eliminating the in-

ternal displacements, £g. (C.13) becomes

c - ¢
Kon Up = PS + PBp (C.14}
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where KgB is deseribed by Eq. (C.4), and Pgb is expressed as

c _ -1
Pep = Pep = K81 *11 P1p (C.15)

and is referred to as the condensed grain boundary load vector due to
plasticity.
- Eq. {€.14) for each grain can be assembled by usual finite ele-
ment means to form the stiffness matrix of the polycrystal.
The above analysis is based on a knowledge of eb. At t =0, €
is computed from the prescribed initial basal strain discussed in chap~

ter IV. It is subsequently updated from the changes in the basal strain

as described by the flow rule (4.14),
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