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ABSTRACT

AN ANAI YSIS OF THE SMALL-SCALE STRENGTH TESTING OF ICE

KENNETH R. MASER

The inadequacy of small-scale strength test
results for the prediction of ice sheet strength
is recognized. Certain patterns appear in these
test results which suggest that the plasticity
of the individual crystal is a controlling factor.
It is found from previous investigations that ice
crystal plasticity is dominated by basal glide,
and that the stress-strain-time properties have
the characteristics of strain softening. A stress-
strain-time relation is proposed which best matches
the reported results. This relation is used in
analytical models which treat the small-scale sam-
ple as an assembly of grains. A modeling by springs
and dashpots shows how failure stress in uniaxial
tension increases with increasing strain rate in
a given range. A finite element model for a poly-
crystalline sample gives quantitative support for
this result, and the resulting curve is very simi-
lar to that obtained by previous experiments. The
model also reveals the character of the nonuniform
stress field associated with the coarse grained
sample. Several directions for future research
are discussed.
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Chapter I

I N T RODU CT I Oi!

Interest in the mechanical properties of ice has focused around

two major areas,� the study of the flow of glaciers and the study of

the strength of floating ice. The motivation for this theseus arose

from an attempt by the author to use an analytical approach to predict
the strength of' floating ice sheets. Since the results of this thesis

have this particular problem in mind, a brief discussion will first be

presented.

A. The Stren th of Floatin Ice Sheets

The numerous engineering problems associated with the strength of

floating ice sheets can be categorized as either problems associated

with a supporting structure or problems associated with a design force.

The problems of support of bui'Iding facilities, over ice transportation,

and aircraft landing are all concerned with the adequacy of an ice sheet

as a supporting structure On the other hand, problems of ice forces

on harbor facilities, dams, offshore structures, and icebreakers all

deal with the ice sheet as a design force, and hence are concerned with

the ability to d stroy it.

Ice sheets in nature take on the convenient structural form of a

plate. Th modeling of ice sheet problems as plate problems will be

briefly discussed.
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Problems of bearing capacity can be represented as the bending

of a plate on an elastic foundation, the bouyant force of the water

being represented as a uniformly distributed linearly elastic spring

with a spring constant equal to the weight density of the water. The

problem of vertical forces due to ice adhering to structural legs and

subject to tida] variations can also be modeled this way if the ice

sheet rather than the ice-structure contact is expected to fail.

Horizontal forces on structures can be modeled as an ice sheet

in plane stress, subject to the forces of the structure p'lus the forces

due to current drag or thermal expansion and c,ontraction. Inclined

structural elements and icebreakers apply both horizontal and vertical

loads, and hence imply a combi nation of both plane stress and bending.

The time scale associated with 'loads on an ice sheet varies con-

siderably. The 'load duration of a building facility can be measured

in months or days. The loadings associated with tidal and thermal

fluctuation are measured in hours, the duration of vehicular traffic

in minutes, and the load history of an ice floe impact or aircraft land-

ing in seconds.

Some knowledge of the type of failure expected is useful in deter-

mining the type of analysis to use. Some information on this subject

is already available. Frankenstein conducted bearing capaci ty tests

on relatively thin ice � to 18 in. thick! and made the following obser-

vations, Failure was always preceded by the formation of cracks an the

under side of the ice extending radially outward from the center of the

'load. Following this event one of two events took p1ace. ghen the load
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was reasonably distributed  i.e., load diameter > 10 x thickness}

circumferential cracks formed on the top surface of the ice prior to

failure. The failure hole was between 17' and 18' in diameter for a

distributed load 15' in diameter. When the load was concentrated �'

in diameter} the number of circumferential cracks was fewer and less

visible, and the ultimate failure hole was approximately equal to the

diameter of the load. These configurations are shown in figure 1.1.

For lateral loads on structural elements two types of failure have

been observed. The first is the formation of radial cracks due to the

plane stress or combined plane stress and bend ing stress fields. This

is then followed by either a local crushing of the weakened ice, by the

breaking up of pie-shaped pieces due to bending, or, in the case of an

ice floe, by cleavage of the floe. Alternatively, no noticeable crack-

ing takes pIace and the ice is simply crushed by the structure, leaving

a clean slot flanked by a berm of crushed ice. These situations are

depicted in figures 1.2 and 1.3, Hhich kind of failure occurs is dic-

tated by the amount of ice which participates in the loading, which in

turn seems to depend on the rate of loading, the shape of the ice-

structure contact, and the integrity of the ice. The slot type failure

has been witnessed in the Cook Inlet, Alaska, where ice floes move at

speeds of the order of six knots. Radial cracks have been frequently2

observed at lower load rates. In either case, force time records for

structural members subjected to !ateral ice loads have revealed a perio-

dic character, which seems to be a property of the ice rather than one
3of the structure. A typical force-time record is shown in figure 1.4.



Figure l.l Bearing FailUre Patterns

Figure l.2 Plane Tensile Fai]ure of an Ice Floe
 arroi.s indicate cUrrent direction!



Figure l.3 Slot Failure at Rapid Loads
2

30

time  sec. !

Figure l.4 Load-Time History 2



For problems of plane stress, bending, and combinations thereof,

a knowledge of the geometry, the loading, and the expected failure mode

invites a variety of' solutions. Neyerhoff has treated ice as a rigid-

plastic material and has determined the bearing capacity of an ice sheet

via limit analysis. The yield lines in his analysis coincide with the

radial and circumferential crack patterns which have been observed in

ice sheets. Nevel has analyzed an ice sheet as a viscoelastic plate

on an elastic foundation. Frankenstein has fit his experimental values

of deflection into Nevel 's solution in order to obtain the material

parameters E  Young's modulus! and ii  viscosity,. The resulting values

shaw a wide scatter. Hevel has also treated the problem of an infinite

wedge on an elastic foundation, observing that ultimate failure in many

cases occurs due to failure of pie-shaped pieces.

The major difficulty encountered in applying such analyses is the

limited knowledge of the material properties of ice � in particular, the

stress-strain behavior and the required fai,lure criterion. This situa-

tion is further complicated by the fact that a reasonably thick ice

sheet, as normally found in the Arctic, is not uniform through the thick-

ness. awhile the top surface of the sheet is approximately equal to the

ambient temperature  say, -30 C!, the bottom surtace is always at the

freezing temperature of tbe water  O' C!. For any material in the neigh-

borhood of its melting point, this is a critical temperature range, and

a considerable variation of properties with temperature, and hence depth,

can be expected.
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B. I'ce as an En ineerin material

Ice does not exh~bit many of the niceties which are characteristic

of other engineering materials . It is formed in nature under a variety

of natural conditions. It exhi bits a complex internal structure, much

of which is visible to the eye, and in this respect is very similar to

concrete. Ice is difficult to work with because the temperatures at

which it exists are not normally compatible to most human beings. In

addition, ice sheets are not smooth ideal plates, as may have been im-

plied by the previous section. Although lake ad lagoon ice is fairly
smooth, arctic pack ice has a highly irregular surface, with irregulari-

ties  e.g., hummocks and pressure ridges! several feet high.

As indicated in the previous section, the properties of ice as an

engineering material are virtually unknown. A few properties have been

generally acknowledged. First, ice is weaker in tension than in com-

pression. Hence, when ice is subjected to a general state of stress,

maximum tension has been assumed to govern the failure. Second, ice is

presumed to exhibit some form of time deper,dent plastic flow. This was

first apparent from observations of the flow of glaciers, which travel

down the s ides ot mountains at sometimes incredible speeds �00 to 200

feet per day has been reported!. Hence glaciologists have treated ice

as a viscous fluid. The engineer concerned with ice sheets is confron-

ted with a broad range of time scales, and as yet it is not clear when

and to what extent such plastic flow is significant. Third, the mechan-

ical properties of ice depend on various parameters. The strength of an
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ice sheet depends on its thickness. The strength of ice in general de-

pends on how fast it is loaded, its temperature, and, in the case of sea
ice, its salinity. Lt is important to understand how the mechanical pro-

perties depend on these parameters in order to make sensible predictions

of ice sheet strength.

Owing to the great thickness attained by Arctic ice sheets  e.g.,

3 to 6 ft.!, and to the great forces required, to fail such ice sheets,

full-scale testing is prohibitively expensive. In addition, the number

of variable parameters limits the amount of information which could be

derived from such tests. Consequently, the major emphasis has been

placed on small-scale testing. The results of great numbers of small-
scale tests have been reported in the literature, but as yet there h8ve

been few realistic suggestions as to how to apply these results to ice

sheet strength problems.

The purpose of this research is to examine the available small-scale

strength data with the intention of obtaining some sort of unified view

as to their meaning. Since there are so many factors affecting ice

strength, attention will be given to tests on a particular type of ice

structure which is the dominant form found in ice sheets, i.e., columnar

grained ice  to be defined!. The test results will be studied in terms

of two particular effects, i,e., the effects of grain size and plasticity.

Before studying the results of small tests it is necessary to review

the internal structural properties of ice, since they exert a large in-



fluence on the observed strength. This is done in Chapter II. Chap-

ter II,'I presents a review of small-scale test results and some inter-
pretations in terms of grain size and plasticity. Chapter IY reviews
the plasticity of' single crystals of ice, and presents a flow law which
is employed in the polycrystalline models of Chapter V. Chapter VI
presents the conclusions of the study and Chapter VII suggests applica-
tions to full-scale ice sheets and directions for future research.



Chapter II

THE INTERNAL STRUCTURE OF ICE

A. Introduction

The results which have been obtained in small-scale tests can be

directly related to the internal structural properties of ice. Before
proceeding with a discussion of small-scale test results, therefore,
it will be useful to review the characteristics of the internal struc-

ture of ice and to suggest how they manifest themselves mechanically.

A thorough review of this subject is presented by Necks and Assur,
14

and much of the foregoing has been cordensed from their report.

B. Ice as a Pol cr stal

Although eight known crystalline modifications of solid H 0 have
2

been isolated and identified, only one is known to exist at the normal

temperatures and pressures experienced on the earth. This form is
known as Ice I  henceforth abbreviated as "ice"!, and it is the most

widely distributed solid found on the earth's surface. Ice generally
exists in the form of a polycrystal, whose grain size and structure

are highly dependent upon the conditions of growth. Saturated snow ice,
for example, has a grain size of less than one millimeter, while cry-
stals several fe t in diameter have been found in glaciers and on the

bottom surface of Arctic ice sheets.

Single crystals of ice exhibit a molecular structure in which the
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oxygen atoms occupy positions in a puckered hexagonal lattice. The
plane of the hexagon is referred to as the "basal plane" and the axis
perpendicular to the basal plane is referred to as the "c-axis." The
molecules are so arranged that for a given unit cell containing four

oxygen. atoms, cleavage along the basal plane requires the destruction
of two bonds, while cleavage along a plane perpendicular to the ba al

plane requires the destruction of four bonds.

C. Characteristics of an Ice Cover

Ice crystals initially form on the surface of the water in the

form of small discs, whose ptane coincides with the basal plane of the

crystal. Because of close packing in the hexagonal plane, the discs

tend to grow most rapidly in their own plane, until they intersect one

another to form a continuous skim of ice over the water surface. Dis-

turbances in the water surface cause many of the discs to be frozen

at some inclination to the surface. After the skim forms, the ice must

begin to grow vertically, and hence the inclined crystals have the pri-

mary growth freedom. The crystals which are closest to being vertical

will have the greatest growth freedom, and as the ice sheet thickens,

these crystals will begin to predominate, The distance over which this

"geometric selection" takes place is referred to as the "transition

layer," and it varies with initial conditions of ice growth, with typ-

ical values for sea ice between 5 and l0 cm. from the ice-air interface.

Below this layer the grains will be columnar shaped with c-axes
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oriented randomly in the horizontal p1ane  figure 2.1!. The grain

diameter tends to increase with increasing depth, with typical values

ranging between .5 and 2.0 cm.

Lake Ice

The ice cover which forms on lakes in northern United States is

generally reported to have two distinct layers � a layer of snow ice

covering a layer of clear ice. ' ' ' The clear ice is formed9,10,11,12

from the lake water as described in the previous section. Snow ice is

formed from the freezi ng of lake water that ha~ infi'ttrated the snow

cover. Snow ice in general consists of small size crystals which10

have neither a preferred orientation of crystal axis nor a preferred

geometric shape. Such crystals are referred to as equigranular. The

crystals of the clear ice have been found to exhibit both c-axis hori-

zontal and c-axis vertical orientations, although the former occurrence

is most favored. This tends to depend on the conditions of growth and

the thickness of the sheet.

Sea Ice

The most significant occurrence in the freezing of' sea ice is the

rejection of salt from the solid phase. At the microstructural level

the solid component of sea ice is fresh water ice. This suggests that

the entire ice cover should be fresh ice covering a,layer of very salty

s ater due to the rejection of brine . The fact that this is not the

case, i.e., that pieces of sea ice contain a considerable amount of

salt, is explained by the instability of the planar interface between
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Figure 2.1 Grain Structure in an Ice Sheet
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the bottom surface of the ice and the water. This comes about as a13

result of the changed freezing temperature profile due to the concentra-

tion gradient produced by the rejected salts. The result is that ice
crystals protruding vertically into the water tend to increase in size,
rather than waiting for the rest of the ice ta catch up. These verti-

cal crystal plates eventually bridge together and entrap vertical col-
umns of highly concentrated salt water. These entrapped brine pockets
are responsible for the salt content of sea ice. They are also responsi-
ble for the fact that sea ice is opaque, while lake ice is genera'lly

transparent. The geometry of this situation i; shown in figure 2.2.
A typical grain of sea ice can be thought of as a long bundle of plates,
with cylindrical brine pockets sandwiched between the plates.

D. Ice as a Solid Continuum

It is of interest here to deal with ice sheets and ice samples us-

ing concepts of stress analysis, and therefore it is necessary to de-
fine the continua over which such analyses shall apply. This may seem

like a formality, but in the light of the frequent discussions in the
literature of "stress concentrators" and their effect on small sample

strength, and in the light of the coarse internal structure of ice,14

it is a necessary step.

The basic continuum for ice is that for which the dimensions of

any problem of interest are much greater than the intermolecular dimen-
sions in the ice crystal lattice. A "point" in such a continuum. must



 a! Grain geometry in the horizontal plane. Brine
pockets are sandwiched between parallel layers.
The grid length is 1 cm.

 b! Brine Pocket geometry
14Figure 2.2 Internal Structure of Sea Ice  Weeks and Assur!



contain a sufficient number of molecules suck tf;at any average con-

tinuum property reaches a stable 1imit as the averaging region approaches

the size of a point. This continuum will be referred to as continuum I.

It is appropriate, for example, to deal with ice as continuum I for pro-

blems involving the concentration of stress about brine pockets or air

bubbles, which have typical dimensions between .1 and .5 mm.

A second continuum appropriate for sea ice would be one for which

the dimensions of interest are much greater than the typical dimensions

associated with the geometry of brine pockets. A "point" in this con-

tinuum referred to as continuum II, must contain seve *al brine pockets.

It would be reasonable to say that an individual grain of sea ice, of

dimensions of the order of 1 cm., is filled with material of continuum

Continuum III is one for which dimensions of interest are much

greater than grain sizes. This is the continuum of relevance in deter-

mining the strength of ice sheets, and the one for which we would ultim-

ately like to know the full spectrum of mechanical properties. A pro-

blem arises from the fact that typical small-scale test dimensions are

such that the small sample is about the size of a "point" in continuum

III. In addition, the small samples are loaded in such a way that they

do not experience the equivalent of "stresses," nor do they exhibit

failures characteristic of continuum III. These considerations will be

dealt with later in the discussion of small-scale test results and in

the development of interpretive models.
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A Stren th Nodel for Sea Ice

Before proceeding to the results of small-scale tests, it is neces-

sary to mention the most important theoretical development in the study

of the strength of sea ice. The theory, proposed by Anderson and

Necks and refined by Assur, relates the strength of sea ice to the15 16

stress af and brine volume v takes on the general form

o = ~ � - A.P!
f o

�.1!

where o- is the "basic strength" of ice with no brine, A is a constant,
0

and p takes on the values of 1/2, 2/3, and 1, depending on the type of

geometric similarity maintained with changing brine volume and on the

cross-sectional shape of the brine cylinders. The brine volume, v, is

computed from temperature and salinity using the phase relations for

sea ice, and is found to increase with increasing temperature and16

salini ty.

The resu1ts of small-scale tests have confirmed the prediction of

Eq. �.1!. Host investigators have found that a value of p = 't/2 offers

the best data fit. Although Eq. �.1! strictly applies to stress de-

fined in continuum II, the uniformity of temperature and salinity in a

region embracing a sufficient number of grains should make it applica-

ble to continuum III stresses.

volume fraction of entrapped brine, v. A geometric model is proposed

for the regular arrangement of brine cylinders in sea ice  figure 2.3!.

On the basis of this model, the variation of the failure stress, of, is

computed in terms of the reduction in load carrying area due to changing

dimensions of the brine cylinders. The relationship between failure
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pur -axis

pocket

.1 mm.

Figure 2.3 Geometric Model of Brine Pockets
15,16
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Chapter II;K

A REVIEjf OF SYiALL-SCALE STRENGTH TESTING

A. Introduction

During the past several years some rather extensive investigations

into the smal1-scale strength properties of ice have taken place. These

efforts have been motivated primarily by a desire to obtain a rational

basis for the prediction of the strength of ice sheets. Because of the
wide scatter associated with small-scale strength results, each inves-

tigatar has had to perform a great many tests n order to obtain mean-

ingful relationships between strength values and the various parameters

involved. In general, each plotted data point represents the average

of some 10 to 20 tests.

Tests have been performed both in the field and in the lab. The

field tests have the advantage of closeness to the natural environment.

These tests simulate the most, desirable engineering situation, i.e., the

ability to obtain on-site information about the strength of an ice sheet

in a particular environment. The environment, on the other hand, gen-

erally limits the kind of equipment which can be used and the capabil-

ity of the human beings performing the experiment. This, therefore,

presents restrictions on the kinds of tests which. can be performed and
on the care with which quantities can be measured and controlled. Lab-

oratory testing permits a more careful study of the dependence of

strength on the various parameters which affect it. Lack of environ-

mental constraint permits a greater range of parameters which can be
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considered, and greater consistency in test procedures. Their purpose,

in. general, is to serve as a guide for future field testing.

Some investigators, in an attempt to combine the advantages of

both types of tests, have had field samples shipped to a laboratory

for testing. This procedure, however, introduces new unknowns due to

the effects, of storage.

B. Factors Affectin Test Results

In order to perform, analyze, and compare the results of any series

of., tests, attention-must be given to.the variability in the internal,

structure of ice, to the environmental parameters associated with the

sample, and to the alternative test and measuring procedures. Some of
the significant factors, as described by various investigators, are .

listed below.

load rate

As shown in figure 1.4, the force exerted on a structure by an

ice floe depends on the rate of load application. This effect has also

been observed in small-scale tests. Load rate is generally expressed

as stress per unit time, and is represented here by a. The experimenter,

however, usually controls the displacement rate of the load-applying

device. Hence, the presentation of results in terms of' load rate can

be misleading. Load rate is usually measured by dividing the computed

maximum stress by the time to failure, or by making some kind of linear

fit to the load-tine curve.
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Temperature is generally expected to have an effect on the meehan-
ical properties of a material. Typical ice temperatures range from

0' to -40' C.

As indicated in chapter II, different types of ice have different

grain geometries, Some are columnar with random shape in a plane
 columnar-grained}, while others exhibit a random shape in space  equi-
granular!, The orientation of crystallographic axes within grains also
varies. Some structures have a random c-axis orientation, others have

a preferred c-axis orientation. It is important to know the orienta-
tion of applied stress with respect to any preferred grain geometries

and c-axis orientations.

de th in ice sheet

Ice properties vary with depth in an ice sheet. This property

variation is frequently dealt wi th i n terms of variations in temperature,

salinity, and grain size .

The processes of extracting and machining test samples induces

initial stresses and strains, not to mention the fact that natural ice

sheets are subjected to considerable stresses and deformation before

test samples are removed.



The question of scale effect becomes important when testing the

behavior of a structure using a small-scale model, The largeness of

the internal structure of ice a1so indicates that strength might vary

with the sample si ze.

The following factors are peculiar to sea ice:

As discussed in the previous chapter, the effects of salinity are

generally handled in terms of brine volume, an<. compared against the

strength-brine volume theory.

Samples stored for any length of time experience a certain amount

of gravitational brine drainage, while samples turned on a lathe will

experience centrifugal bri ne drainage, In addition. the brine volume of
any given point in an ice sheet varies with time, with a general ten-
dency to decrease. In these cases, the internal structure which came
about as the result of brine entrapment still remains. If strength. is

to be related to internal structure via brine volume, then these losses

must be taken into account.

solid salt reinforcement

The various salts present in sea water crystallize within the

brine pockets at various temperatures in accordance with the phase re-

lations for sea water. It has been observed that at -23' C, where16



HaCl 2H 0 precipitates, sea ice takes on noticeably different visual
~nd m «.,nicai char:cteristics, This observation has led to the belief

that these salts precipi'.a-~ . in such a way as to reinforce the walls of
existing brine cylinders. Consequently, it has been suggested that, dis-
continuities in strength relationships should be expected to take place

at these temperatures, particularly at -8.2~ C  precipitation of
Na>504.10 H20! and at -23' C.

Differences in properties between annual i-.e and ice of greater

age are expected. -One such property is the 'loss of brine.

ometric h steresis

Meeks has suggested that a test specimen subject to temperature17

fluctuations, particularly a warming cycle, migh't retain th:. internal

structure of' the warmest temperature attained, although tnis is not the

test temperature. He found this hypothesis to be significant in affect,-

ing strength's below -23'.C. This is a problem which may t.e encountered

in the storage of test samples.

1t is evident that to discus' the existing d.".ta in '-..»'. of all ot

these factors would seriously limit the possibil: l;» of dr;-.,',,g any con-

clusions. They have been brought up now so th':t th i'r si'.;s=.Iuent mcn-

tion in connection with any of the results m;.n'Lion:.0 heroin will be

facilitated.

for the ensuing discussion,,att ntion ; i 1'l b' 'j; cK.'-' ' . J.rd;

presenting ,egular patterns which have been o ".=rv;d ~e ,.' 'n ice =-«r,,pl=.
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strength and temperature, rate of 1oading, and brine volume.

C. Description of Tests

The most typical types of strength tests employed on ice samples
are shown in figure 3.1, and are described briefly below.

uniaxial compression test

These have been generally performed on cylinders or rectangular

prisms of wi4th 2 to 8 cm. having a height-to-width ratio from 2 to 3.
Russian investigators have frequently used cubes. Compressive18

strength wilI be designated as g .
c

uniaxial tensile tensile test

These have usually been confined to the laboratory because of the

problems associated with gripping the ends of the specimen. Devices
for accomplishing this have included a braided wire gripping device,
freezing the ends to metal fixtures, ' clamping tapered ends between20,21

fitted metal grips, and applying the load through a bolt passed22

through a wide portion of the specimen. Samples are generally 2 to23

5 cm. in width or diameter,

Given that there were no problems associated with the load applica-

tion, the uniaxial tensile test is the best of the tests for tensile

strength, since the load is applied uniformly and the stress is com-

puted directly from the applied load. The fact that it is difficult to
conduct has caused investigators to seek alternative means for determin-
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compression uniaxial
tension

ring tensile

flexural

Brazil

direct shear

situ cantilever

Figure 3.1 Geometry of Tests
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ing tensile strength, Uniaxial tensile strength values will be desig-

nated by at

fl exural tes t

The use of the flexural test exp1oits the fact that ice is much

weaker in tensi on than in compression. These tests have employed both

center-poi nt and third-point loadings. Beam depths range from 2 to 6

cm. In all cases the stress has been computed via the elastic beam

formula, af = N/S, where M is the maximum bending moment, S is the
section modu1us of the beam, and Of is the computed stress at fai lure.
Due to the nature of the stress distribution from elastic theory, only

a very small portion of the cross section is subject to stresses near

the computed maximum.

rin tensile test

Due to the simplicity of obtaining and testing samp'tes, this has

been by far the most popular of the small-scale strength tests. It

originally was used in connection wi th rock mechanics. Preparation of

samples involves cutting a cylindrical core out of the ice sheet, slic-

ing it into discs, and drilling a coaxial hole in each disc. A com-

pressive load is applied perpendicular to the cylinder axis, producing
tension at the inside hole under the load. This is where the failure

takes place. The tensile stress causing this failure is computed from

an elasticity solution to the problem presented by Ripperger and

Davids which yields
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PK
a

rt ii-t r

where P is the applied 'load, r is the outside radius of the cylinder,

o is the "ring tensile strength," and K is a concentration factor de-
rt

pending on the ratio r-/r , where r. is the inside hole radius. The
i o 1

dimensions of the ring tensile specimen have been standardized du" to

available equipment and for the sake of consistency. A 3 in. diameter

coring auger extracts the sample  r = 1.5 in.}and a � in. diameter co-1
0 ' ' 2

axial hole is drilled  r. = .25 in.!. For these values, K = 7.09.
16

i

Hrazi] test

The Hrazil test is a ring tensile test without the hole. The

theory of elasticity solution for this configuration predicts a uni-

form tensile circumferential stress under the load, indicating that

failure should be characterized by the cylinder splitting in half. This

type of failure has b en observed in the testing of rocks. The magni-

tud- of the failure stress is expressed as

P
obr ii-t r i3.2!

These dimensions apply to all the results discussed herein, unless other-

ivi se indicated.

The difficulty with the ring tensile test is similar to that of

the flexural test. The maximum stress must be computed using elastic

theory, and, so computed, is localized in a very small region of the

sample. This problem is exaggerated in the ring tensile test because of

the high stress gradient at the inside hole.
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and is equivalent to the ring tensile solution with K = 1. There has

been some confusion over the interpretation of Brazil test results, due

to the fact that for the ring tensile stress field,

�.3!

while Eq. �.2! implies that K = 1. This is a mathematical discontinu-

ity. In an effort to force Brazil test results to match ring tensile

test results, investigators have suggested that the existence of small

brine holes and/or air bubbles implies that K = 6 should be used,
16

Considering the discussion of chapter II, it is not appropriate to

speak of concentrations due to a .1 to .5 mm. diameter hole and due to

1/2 in. diameter hole in terms of the same stress field. Hellor and

kawkes have also suggested that the large compressive stresses in24

the Brazil test specimen � times the tensile stress at the center!

should be considered in the failure criterion. Due to these problems

of interpretation, and due to the great, amount of scatter reported to

be associated with Brazil test results, this test has not been used

extensi ve ly.

shear test

No standard shear test has been developed for ice. Torsional

shear tests by Butkovich resulted in spiral shaped failure surfaces,10

indicating failure due to tension. "Direct shear" tests are designed

to force the specimen to fail in shear on one or two particular planes.
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This has been accomplished by several different methods, and the limi-

ted results which are available seem to dep nd on the method used.

in-situ cantilever

Although this is not a small-scale test, available results are

sufficiently numerous and of sufficient interest that they merit atten-

tion in the context of small-scale tests. The cantilever is carved out

of an ice sheet by cutting three sides with a saw and allowirg the

fixed end to remain connected to the ice sheet. The load is app'lied,

up or down  tension in bottom or top! via some sort of' lever arrange-

ment, ice thicknesses tested have ranged from 15 to 95 cm. The com-

putation of the moment at the fixed end has generally neglected the

change in bouyancy due to deflection, and the maximum stress, denoted

as o-., is computed from the moment using elastic beam theory.
1sc

0. A Review of Test Results

The presentation of test results in this section will be limited

to those resu1ts to which the analyses of the ensuing chapters are

applicable� . In particular, attention is given to results for columnar-

grained ice, with c-axis perpendicular to the long axis of the column

and rando;«ly oriented in the horizontal plane of the ice sheet. Those

loadi ngs wi 1 1 be considered for which the applied stress is perpendi cu-

lar to the long axis of the column and in the plane of tIie c-axi s.

Although this is a rather specialized situation, it is the most fre-

qu ntlg encount red t~ om try and stress state associated with thE bend-
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ing and/or plane stress states in an ice sheet. This type of loading

and grain geometry is i11ustrated in figure 3.2, and sha11 be assumed

unless other vise stated. Other types of grain geometries and 1oadings

will occasional1y be mentioned for the sake of comparison. A compre-

hensive review of sma11-sca'te strength test results is presented by

Reeks and Assur.
14

com ression test � fresh water ice

Compression tests are generally characterized by the formation of

small internal cracks at loads far below the failure load. ' 'Hhen18.25

enough of these cracks have formed, failure takes place either along

a plane of maximum shear or along fault zones, the latter occurring at

highe~ load rates, than the former. Some of the strength results are25

summarized below.

1} eometric effects

8utkovich found that compressive strength decreased with increas-9

ing ratio of length to diameter, and with increasing cross-sectional

area. He a1so found that larger grained ice yielded higher strength

values.

21 ~tf 1 li

Gold found that the compressive strength of ice increases with25

increasing crosshead speed as shown in figure 3.3. At the low load

rates the specimen yields, while at the high load rates, failure is

abrupt, as can be seen from the typica1 stress-strain curves shown in

figure 3.4. Reeks and Assur report results of Hutiagin, which show14
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Uni axi al ring tensile

flexural

Figure 3.2 Orientation of Grains v,ith respect to Specimens



41 C
<Cl
S-

l/l CU
+>

O CO

S eo
> Ch

l

C
«n 41

OJ
m >
$

ID
u! ~

V

O cn
v! M
dj  h
$8

E 4-
O~

  0!~/'6q! qq.6uaagg awI.ssa~du!og



42

a decrease of strength with increasing rate. These are a'Iso shown in

figure 3,3.

3! ~ter, erature

In general, fresh ice compressive strength has been found to in-
10,23 10crease with decreasing temperature. ' The results of Butkovich

corn ression t st � sea ice

Compressive s trength studies on sea ice have been carried out by

Butkovich ' and Peyton. Specimens tested were both parallel and27,28 20

perpendicular to the plane of the ice sheet. I=or both yt was found that

fa~ lure was either by rapid deformation at the maximum load  ductile!
Por by "bursting with a loud report into hundreds of small fragments.

He also reports strengths of vertical cores to be t>to to three times

greater than horizontal cores. The following results apply to hori-

zontal cores.

Peyto~ has stud~ed the load rate effect extensively. He expres-

ses the effect of load rate on strength as

where o is the stross rate in psi/min. The rate exponent in compres-

sion, r , is expressed via a regression analysis, as
c

16~ d.138 .09
C

I3.5!

are shown in figure 3.5, and are typical of those of other investiga-

tions. For infiltrated snow ice, Butkovich found a much weaker temper-

ature dependence.
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Strain

Figure 3.4 Stress-Strain Curves in Compression-
Fresh Ice
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Figure 3.S Compressive Strength vs. Temperature-Fresh Ice 10



where d is th depth of the ice sheet in inches and T is minus 'C.

This relation was derived from load rates up to 3000 psi/min. The im-

plied strength � load rate relationship for a given depth and tempera-

ture, passing through an arbitrary data point, is shown in figure 3.6.

Later results in a higher load rate regime show the opposite effect,

i .e,, decrease of strength with increasing load rate. These are "iso

shown in the figure.

2} brine volume

Butkovich presents limited data which indicates decreasing strength

with increasing brine volume. Peyton analyzed his results i,n terms of

the brine pocket model discussed in chapter II, and found that the

strength variation with brine volume could be represented by a linear

variation with Dv. His data also suggest that the slope of this rela-

tion changes discontinuously at -8.2'C, implying a reinforcing effect

due to the preci pitation of Na SO 10H20. Peyton's analysis indi cates

that the effect of temperature, other than through brine volume and

solid salt precipitation, although more signifi cant with increasing load

rates, is not so significant as in fresh water ice.

uniaxia1 tensile test � fresh water ice

The uniaxi al tensile strength of ice is about 1/4 of its uniaxial

compressive strength. Unlike compressive fai lure, uni axial tensile

failure occurs suddenly arid without the noticeable formation of inter-

18nal cracks. Uniaxial tensile results have been presented by Butkov-

ich, Jellinek, and by the South hanchuria Rai]way Co. Butkovich10 - 21 23
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used commercial ice with loading normal to the columnar grains. Tests

reported in reference 23 loaded specimens parallel to the ice sheet.

Although the crystal orientation of the latter is not made clear in

the reference, these two test series will be considered comparable,

Jellinek used fine grained equigranular snow ice prepared in the lab.

1! load rate

Figure 3.7 shows the dependency of strength on load rate as pre-

sented in references 21 and 23. The magnitudes should not be compared

because of the diff'erence of ice types, but the trends are interesting

to note.

2!

References 10 and 23 show ot increasing with decreasing tempera-

ture. Their results have been plotted together in figure 3.8.

uniaxial tensile test � sea ice

Uniaxial tensile tests on sea ice have been performed by Dykins

and Peyton. The tests by Dykins were performed on sea water frozen20

in the lab under conditions which simulated sheet ice growth. Peyton

used samples obtained in the field.

1! eometric effects

Dykins found no variation of strength with depth, for a fixed tem-

perature and salinity range. Since grain diameter increases with depth,

he uses this to conclude that there is no variation of strength with

grain si ze . Dyki os also found tensile strengths perpendicular to the

ice sheet to be two to three times greater than horizontal tens~le

strength.
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2! load rate

Peyton's analysis of his data follows the format of Eq. �.4},

where r is now replaced by rt, the rate exponent in tenston. A re-
c

gression analysis of his data leads to the following relationship

for rt-
082 d!-.295�! .065

This relation indicates a much lower strength sensitivity to

rate than was found in compression for the tensile load rates used.

The rate sensitivity to temperature is almost unnoticeable. It is

interesting to note that the rate dependence on depth is opposite tc

that found for compression. Dyk>ns found strength to decrease with

increasing load rate tn a higher load rate regime, The results of

these t< o studies are plotted together in figure 3.9.

3} brine volume

Both investigators' found an approximately linear dependence of

strength on yv. Dykin's results are shown in figure 3.10.

flexural tests � fresh water ice

Test results presented in reference 23 show that the flexural

strength of small beams decreases with increasing beam depth and with

i ncreasing temperature . The results for temperature are shown i n

figure 3.11.

flexural tests � sea ice

1! load rate

D~ kins and Tabata have studied the flexural strength of all29 30
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sea ice beams. Tabata has studied the effect af load rate and has

found an increasing strength with increasing load rate, with the ex-

ception of very low rates. His results are shown in figure 3.12.

2! brine volume

The temperature-salinity results are similar to those found in

uniaxial tension. Dykins uses brine volume as the relevant variable

and finds a linear re'Jation between strength and A . Tabata shows

increasing strength with decreasing temperature at a fixed salinity,

which coincides with decreasing brine volume. These results are shown

vs. brine volume in figure 3.13.

rin tensile test � fresh water ice

The limited number of ring tensi le results available for fresh

water ice indicate an increase in strength with decreasing temperature,

down to about -10 C, followed by a region of relative insensitivity

to temperature between -10' C and -35' C.17,31

rin tensile test � sea ice

1! load rate

Paige and Kennedy have studied the effect of load rate by test-32

ing samples at various crosshead speeds. A typical curve of their re-

sults is shown in figure 3.14. As the crosshead speed is increased,

the computed strengt"s approach values comparable to those obtained in

uniaxial tensi'Ie tests, The speeds required to bring this about, how-

ever, far exceed those normally used for other ring tensile results.
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2! brine volume

Ring tensile testing has been used extensively to study the rela-

tionship between strength and brine volume, and represents the most

consistent study of any ice strength property. Table 3.1 shows the

strength-brine volume relationships which have been obtained by the

authors indicated. Strength is in kg ./cm and brine volume is measured2

as the volume fraction.

ldeeks has studied the effect of the precipitation of NaC1 ~ 2H 0 by17

conducting tests on laboratory ice formed from a solution of NaCl and

water. He found that below the precipitation temperature, o t was inde-rt

pendent of the amount of precipitate present and comparable to that for

fresh water ice. The results of Greystone and Langleben indicate no
33 .

effect on strength with the precipitation of Na2S04 10H20.

3!

Tests by Paige and Kennedy have indicated that ring tensile strengths

are not affected by increasing the diameter of the inner hole. Early

results of Butkovich, ' however, using a one-inch diameter ho1e,27,28

exhibit strengths lower than those which seem to be typical for standard

ring tensile tests. Langleben has found a consistent increase of35

strength with depth, regardless of brine vo'tume. From this he implies

an increase of strength with grain size, the other depth dependent vari-

able. Horizontal cores hav" yielded lower strenqths than vertical

36
ones.
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Table 3.1 Strength vs. Brine Volume Relations for Ring
Tensile Tests

8 bA  k / 2!



56

Brazil test

Very fe» results are available for the Brazil test. Those whi ch

are availab1e have been interpreted using K = 6, and as such show vaIues

by the ring tensile

by comparino Brazil

slightly higher for those of equivalent ice tested

test. Frankenstein tests the K = 6 assumption31 . 31

test results to companion ring tensile results and finds that using

K = 5.2 would make them similar. The brine volume dependence as repor-

ted by Dykins is shown in Table 3.1 along with the ring tensile resu1ts.

shear tests

The results of shear tests vary with the type of test. Figure 3.15

23 to produce the results shown in figure 3.16. Voitkovsky mentions

results which show that the shear strength increases with increasing

compression on the shear plane. Butkovich used a double shear method

on sea ice, by putting the specimen in a three-sectioned box with the

load applied to a movable m~ddle section. Failures in the section be-

tween the two shear planes always occurred before the final shear fail-

ure, and the resu1ting shear fai lure stresses were considerably higher

than those fror. other investigations.

in-situ cantil v.r � fresh water ice

11,12,37Frankenstein ' ' has tested in-situ cantilever beams of lake

ice wi th thicknesses rangi ng from l 1 to 75 cm. His samples consisted

shows the effect of max~mum shear in torsion on temperature, as reported

by Butkovich. Di~ect shear between two blocks was used in reference10
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of clear ice, snow ice, and combinations. His values for strength

ranged between 2 and 8 kg/cm for load rates between 0.1 and 2.0 kg/2

cm /sec. For clear ice, the data shows greater strengths when the2

bottom was in tension, and showed no significant effect of temperature

on strength. Smal]-scale beam tests on the same ice gave values two

to three times higher than those for the in-situ beams. Voitkovsky
18

reports strength results for in-situ cantilevers  referred to in

Russian as "piano keys of ice"! which are similar to those of Franken-

stein.

Brown 8 suggests that there is a stress concentration at the corner

of the fixed end, and that the actual stress is increased by a factor

of 2.8, a va'lue obtained from photoelasti c analysis� . Frankenstein
. 12

has tested simply supported beams in place, and has found strengths to

be slightly higher than those for companion cantilevers, but not suf-

f i ci entl y to j us ti fy the 2. 8 f actor.

in-situ cantilever � sea ice

In-situ cantilever tests on sea ice beams have shown no noticeable

difference between push down and pu! l up results. Weeks and

Assur have presented the in-situ canti lever results of references 27,14

15, and 40 in terms af Pv as shown in figure 3.17. Tabata et al. 40

has found the strength to increase with increasing load rate for ice

sheets less than 30 cm. thick at temperatures close to O' G, i.e., ice

sheets less with fairly uniform temperature through the thickness. These
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results are shown in figure 3.18. It can be seen that strength values

from in-situ cantilever tests are lower than those for any of the

small-scale tests.

E. Inter retation of Test Results

The basic purpose of a small-scale test is to obtain some informa-

tion about the failure of ice, which can then be applied to a fu11-scale

ice sheet problem. The first problem in doing this is that the stress

state experienced by the small-scale sample, and the type of failure

produced by this stress state, are both distinctly different from what

is experienced in the full-scale ice sheet. The second problem is that

the interpretation of a small-sca1e test result re1ies on a knowledge

of the stress state in the sample. The complex -internal structure of

ice, and the lack of understanding of the small-scale properties of ice,

make this knowledge difficult to obtain. It should be emphasized that

the problem of interpretation is distinct from the problem of applica-

tion; i.e., having satisfactorily interpreted the results of a series

of small-scale tests does not imply that they are directly usable for

the prediction of the strength of an ice sheet.

The basic attempt here is to interpret the small-sca1e test result;

i.e., what information does the test yield? This attempt will be foun-

ded upon the idea that there are some fundamental properties of ice

which manifest themselves in the small-scale test. The results of ex-
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tensive experimental studies are available. It is desired to utilize

these results to se if they suggest any intrinsic properties which

have heretofore been ignored in the analysis of the data. The identi-

fication of these properties and their quantification via some sort of

physical-mathematical model will allow for a reassessment of test re-
t

suits and wil t shed further light on the results that have been ob-

tained, This has been done in the case of brine volume  see chapter

II!. This approach shall be pursued here. One would like to know, for

example, if the variation of strength on a particular parameter ~s a

function of the type of test conducted or of the material being tested.

If the former is true, then one can guess just what intrinsic proper-

ties manifest themselves in that type of test but not in others. If

the latter is true, then something has been learned about the material,

and it can be assumed that that property will somehow exhibit itself in

other test situations and in full-scale behavior.

Summar of Test Results

In the light of the test results just, presented, the following gen-

eralities can be made.

com ressive strength

As expected, the strength of ice in unconfined compress~on far ex-

ceeds that found in any other type of test . The fai lure process, whi ch

is accompanied by a high degree o internal cracking, suggest further

investigation.
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2.

Of the four predominant methods of tensile strength testing, the

following inequality seems to be the rule:

�,7!
rt fR t isc

Typically for sea ice, ring tensile strength values lie between 15 and

30 kg/cm , flexural strength values between 7 and 15 kg/cm , uniaxial2 2

tensile strength values between 2.5 and 8 kg/cm, and in-situ canti-2

lever strength values between 1.5 and 6.0 kg/cm .
2

Very little information has been obtained from shear strength tests

due to the limited results available, the variety of testing techniques,

and the fact that specimens do not generally fail in shear unless forced

to do so.

4. stren th � tern erature

With the exception of ring tensile results between -10' and -35' C,

all small-scale test results on fresh ice exhibit a marked increase of

strength with decreasi ng temperature, usually most prominent in the

range between 0 and -10' C  figures 3.5, 3.8, 3.11, 3.15!. Independent

of its effect via brine volume, temperature seems to have no effect on

sea ice strength.

5. stren th � br;ne volume

It is difficu1t to conclude anything other than the linear depen-

dence of strength on vv, since almost all results have been fit in this



manner  Table 3.1}. The most convincing results have been those ob-
tained via ring tensile tests, and it is possible to have deduced the
Pv relationships from these results. The results of other tests are

no't so convi ncing.

6. strenqth � load rate

As sugq sted in chapter I, the strength variable which takes on
the greatest range of values is the load rate. It is evident from the
results which have been presented that the effect of load rate has not
been clarified. Strength seems to increase with increasing load rate

in the low load rate regimes, while the opposite effect is observed in
the higher regi mes. llith the exception of the results of' Jellinek
{figure 3.7!, each test series has exhibited either one trend or the
other  see figures 3.3, 3.6, 3.7, 3.9, 3,12, 3.14, 3.18!, The transi-
tion point  if one really exists! varies considerably depending on which
tests are considered.

7. stren th rain size

Although this effect has not been investigated extensively, there
are indications that qrain size plays an important role, Butkovich
 compression!, Jellinek {uniaxial tension!, and Reference 23  flexural!
all found decreasing strenqth with increasinq sample size. The extremely
low strenqth resu'Its for in-situ canti"Ievers also coincide with this

trend. 8utkovich {compression!, and Langleben  ring tensile! found in-

cr asinq strenqth for larger grained ice. Dykins' results  uniaxial
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tension} show no such effect, while Peyton's results  compression and

uni axial tension! go both ways, if depth in both of these cases i s con-

sidered to be a measure of increasing grain si ze. In any event, these

results suggest a possi ble dependency of strength on the number of

grains per sample. This seems to be a reasonable variable for these

small-scale tests, where specimen size is not much greater than grain

size.

8. small scale vs. fu11 scale

The results of in-situ cantilevers are difficult to interpret be-

cause of lack of understanding of the variation of properties through

the thickness. One thing that is apparent is the similarity in magni-

tude between in-situ cantilever results and uniaxial tensile results.

This suggests that the uniaxial tensile test yie'Ids a strength value

which is applicable to full-scale ice sheets. The dependency on rate

of loading, however, does not seem to agree for these two tests.

These observations invite a multitude of' explanations which can go

back and forth indefinitely. The remainder of this research is con-

cerned wi th the influence of two spec~ fi c factors � time-dependent pl as-

ticity and the existence of grains, and an attempt will be made to see

how these two factors can reconcile some of the existing results.

Effects of Plasticit and Grains

Time-dependent plasticity and the existence of grains are effects

which have generally been ignored in the interpretation of small-scale



strength data, but wh',ch have been occasionally mentioned in the con-

text of explaining anomalous behavior. The exceedingly high ring ten-

sile results gi ve a fi rst indication that such effects are signifi cant.

These results were originally explained by the "critical flaw" argu-

ment � that the smallness of the reqion of maximum stress in the ring

tensile test yields a lower probability of finding the critical failure-

producing flaw than in the larger area of, say, the uniaxial tensile

test. This is a Griffith-type argument based on a uniform distribu-28

tion of flaws in an otherwise homogeneous material. This argument, how-

ever, does not seem to be relevant for a material as inhomogeneous as

small sample ice. A more relevant argument seems to be the fact that

in the ri ng tens i !e test,, the maximum stresses are experi enced by i ndi vi-

dual grains  points A and 8 , figure 3.19! rather than by the polycry-

stalline aggregate as a whole. Failure then depends on the way in which

these individual grai ns carry the load, and the way in whi ch the grains

along section AB distribute the load,

The results of Paige and Kennedy  figure 3.14! suggest that the time-

dependent plasticity of individual grains qoverns the computed failure

load. The apparent load-rate effect is very likely due to the miscalcu-

lation of the maximum stress as a result of plastic stress relief in the

highly stressed reqions, as suggested by Nevel and depicted in figure41

3.20. Lower load rat=s allow for greater stress relaxation and redi stri-

bution, and hence r suit in a qreater eri.or associated with the elastic

stress computation. As load rates increase, the response becomes more

el a- tie an3 the c i,; v'ted st. e..s a»,.~roaches a valu near to that of the
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Figure 3.19 Grain Structure Under Ring Tensile Load

ibution due
elief

c Stress

istribution

Figure 3 .20 Tensile Stress Distribution in a Ring Tensile Test

Figure 3.21 Alternative Flexural Test



uniaxial tensile strength.

The place of of in the sequ nce of Eq. �.7! is more difficult
to explain in this context. The first temptation is to explain this

effect as an overcomoutation due to the neolect of plasticity, as was

just done for the ring tensile test. The only results available for

gf vs. load rate  figure 3.12!, however, show a mild increase of
strength with load rate, similar to that found in uniaxial tension in

the same range  figure 3.9! . This contradicts the plasticity argument.

A characteristic of the flexural test which makes it different from

the uniaxial and ring tensile tests is that the stress gradient lies

along the long axis of the columnar grain  see figure 3.2!. Conse-

quently, only a small portion of each grain is subjected to the maxi-

mum tensile stress, with the opposite end of the grain subjected to

compression. This could very likely inhibit the sample from failing

at the uni axial tensile strength .

Reference 23 mentions the results of flexural tests performed on

small beams of similar structure as those described herein, but with

the loading perpendicular to the column axes  figure 3.21!. The results

are reported to be similar to those loaded parallel to the column axes.

This coincidence sugqests that th se alternate test results fit pro-

perly into the Eq. �.7! sequonce according to stress relief arquments.

It is suggested that future small beam tests be cut horizontally from

the ice sheet  as is currently done!, but loaded in the horizontal

plane. A study of the effect of load rate for these types of tests



should exhibit the strength-load rate characteristics of the ring ten-

sile test,

it should be pointed out that the fact that the plasticity argu-

ments ascribed to ring tensile tests are not valid for flexural tests

is not contradictory. The former concentrates stresses on one grain,

while the latter distributes stresses across several. At the moment,

there is no reason to assum that the plastic behavior of the single

crystal and the polycrystal is similar. This observation, accompanied

by the influence of single crystal plasticity on ring tensile results

implied above, suggests that further study of the plasticity of ice

single crystals would shed some light on the observed behavior of small

samples. A knowledge of single crystal properties would also a'Ilow for

the treatment of the smalI sample as the coarse aggregate of grains

which it really is.

A review of the plasticity of single crystals of ice is presented

in the next chapter.
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Chapter IV

THE PLASTIC FLOH OF SINGLE CRYSTALS OF ICE

A. Introductiorr

Since sincIe cr, stals are going to be treated as distinct entities

in the analysis of polycrystalline samples, i t is fi rst necessary to

establish a gen raI flow law; i,e., a relationship between stress,

strain, and time . hich is valid for all possible stress and strain his-

tories. The effect of load rate will be implied by such a relationship,

while the effects of temperature and s xlir.i ty will affect the material

parameters. It will be kept in mind that such a law need on1y span a

regime which incorporates the stresses, strains, strain rates, and tem-

peratures experienced by single crystals in an ice sheet. For the pro-

blem outlined at the end of the last chapter, this regime is ful"ther

limited to that range of variables applicable to a small-scale strength

test. In vie;! of the fact that a good deal of the research to be dis-

cussed has been oriented towards explaining the flow of' glaciers, this

point is important to keep in mind.

The elastic prop rties of single crystals have been fairly well de-

fined. The hexagona1 sir.;r.,etry of' the crystal lattice implies the exist-

ence of fi ve i ndependlent elastic constants . These values have been re-

ported by Jona and Scherrer.
66

B. Qua'l itative F!p cts of Sloole~Cr stal Fl oe

DescriI 'lori or T sts

The:;".st:,-i~fr,' s",cti»l research concerning tho flo<.' of single crystals
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of ice has taken place in the past 16 years. During this time, the

two basic types of ice which have been studied are natural single crys-

tals found in glaciers and artifi cia1 single crystals grown in the lab-

oratory. Hoth of these single crystal types are different from the

single crystals found in an ice sheet in both the method of growth and

in the impurity content. Natural single crystals of glacier ice are

desirable because of their purity and because of the reproducibility

of the results obtained from them. Artificial single crystals, on42

the other hand, approximate more closely the type of growth experienced

by single crystals in a natural ice sheet. 1n spite of these differ-

ences, however, it will be assumed that the basic characteristics of

the flow of ice single crystals can be deduced from these types of sam-

ples. The similarities between the results obtained from glacier and

artificial single crystals supports this view. To this author's know-
'43

ledge, there has been no reported research concerning the flow of single

crystals of salt water ice.

The types of tests whi ch have been performed consist of uniaxial,

beam bending, and shear tests. The uniaxial tests include both tension

and compression of cylinders and thin plates. The beam tests are per-

form d on simply supported beams with a concentrated load at midspan.

The shear tests are performed on blocks sheared on two opposi te faces.

Geometr of Deformation

It has been known since the 1ate 19th century that the most signif-

icant aspect o, ice creep is slip along the basal plane of the crystal.
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tensile test

 a!

compression te:t

bending

 b!  from Nakaya !
45

Figure 4.1 Geometry of Single Crystal Deformation
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This type of deformation is visible to the. naked eye, for largely de-
formed samples, as cylinders necking into tapes, or compressed into
segments sliding over one another '  figure 4.la!. Tests of small43,44

single crystal beams by Nakaya have shown that single crystals de-45

form like a deck of' cards, with the deformation concentrated in dis-

crete layers  figure 4.lb!.

Attempts were made by most of the early creep investigators to es-

tablish a preferred slip direction in the basal plane, similar to the

slip directions found in most metals. From the viewpoint of atomic
structure, a likely slip di rection would be one of the three <1120>

di rections, due to the fact that these directions exhibit the hi ghest

density of' oxygen atoms. Experimental studies have shown, however,46

that the direction of slip always seems to be in the direction of the

maximum resolved shear stress in the basal plane, regardless of the

orientation of the a-axes. Figure 4.2 shows the crystallographic nota-

tion which is being used here.

Cree Curve Characteristics

Almost all investigators who have investigated the transient creep

behavior for ice single crystals have found that whenever a component

- of shear stress exists on the basal plane, the resulting creep curve is

concave upward Figure 4.3 shows a typical creep curve. This result

was originally thought to be due to the geometric effects associated

with tertiary creep but subsequent investigations showed that this53
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Figure 4.2 Crystallographic Notation  basal plane!

Time  min.!

43
' Figure 4.3 Typical Creep Curve
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was observed at strains we11 below those associated with geometric

nonlinearity. This creep curve is unusual when compared to the creep

of metals.

Steinemann tested single crystals in shear and found that the46

creep curve had two distinct regions � a "hard" region for strains

less than le to 20K and a "soft" region for strains greater than 105

to 20%, the transition being characterized by an abrupt change in slope.

He described this phenomenon as "work softening." The second stage

was found to terminate in a linear region of constant strain rate. Com-

pression creep tests by Griggs and Co1es yield curves similar to those43

of Steinemann in their upward concavity but without the transition and

the terminal linear stage. Tensile creep tests by Jellinek and Brill
48

have also revealed the accelerating creep rate. In references 43 and

48 the authors claim to have had difficulty in reproducing their creep
49

curves. Subsequent creep investigations by Butkovich and Landauer,

Higashi et al. and Jones and Glen ' have all confirmed the idea50 51,52

that a resolved shear stress on the basal plane produces an acce'Ierat-

ing creep curve. Higashi et a1. have found curves which terminate with

constant s1ope. In general, terminal portions of creep curves are due

to the combined effect of large deformations and the type of testing pro-

cedure.

For cases where there is no resolved shear stress component on the

basal plane, Butkovich and Landauer, Jellinek and Brill and Glen and49 48

Perutz have found initially decelerating creep typical of most metals,53



with average strain rates on the order of one hundredth of those found
for specimens oriented favorably for basal glide. G1en and Perutz have
explained this as due to a slight misorientation of the basal plane in
the testing machine, while Butkovich and Landauer suggest that the creep

is due to mechanisms other than basal glide,

Stress-Strain Curves at Constant Strain Rate

Readey and Kingery, Hi gashi et al., Jones and Glen and Waka-54 .. 50 51

hama have conducted stress-strain experiments at constant machine55

crosshead speed. All of their resulting stress-strain curves showed an

initial linear portion leading to a maximum followed by a gradual de-

is a function of temperature and strain rate. The most interesting as-

pect of this curve is the "yield drop" which leads to a "strain soften-

ing." This is opposite to the results for low temperature meta1s, which

generally exhibi t a strain hardhning.
Higashi et al. report that the slope of the initial linear portion

of the curve depends on the strai n rate, a result whi ch contradi cts the

idea that the initial linear portion is due to rate independent elastic-

ity. This dependency has not been found by the other investigators.

Makahama finds that only his curves for high strain rates exhibit the

yield drop, while the others retai n the maximum stress wi th continued
straining. His samples are thin plates 1 mm. thick, while the other

2 cm. in diameter. Hu guruma

layer imperfections has a ten-

investigators used cylinders about 1 to
4 I

has shown that the existence of, surface

crease in stress, as shown in figure 4.4. In general, the maximum stress
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5lFigure 4.4 Stress-Strain Curve at Constant Crosshead Speed
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dency to lower the yield points and flatten curve s. Makahama's results
suggest that such imperfections might exert a greater influence on
smaller samples. Hakahama's results also imply that there is a transi-
tion from yield drop to constant yield stress with decreasing strain

rate.

Stress Relaxation at Constant Strain

Little attention has been given to the stress relaxation charac-

teristics ot ice single crystals since these characteristi cs represent

a strain history least likely to be experienced by a natural ice crys-

tal. The consideration of relaxation here, however, will give a more

complete pi cture of the general flow p. operties. Such test results
have been reported by Makahama and Readey and Kingery. A typical55 54

stress-relaxation curve is shown in figure 4.5.

Dislocation Plodels

Several attempts have been made to explain the observed plastic

deformation of ice crystals in terms of the theory of dislocations.

The most common dislocation model suggests that plastic deformation

is due to the motion of dislocations along the basal plane. Kamb has

explained the apparent lack of preferred slip direction by hypothesiz-
ing that dislocation motion takes place simultaneously along the al,
a2, and a> axes according to a power law stress-strain rate relation-
ship similar to that proposed by previous investigators  see next sec-

tion!. He has shown that for values of the exponent n up to and in-

cluding 4, the maximum angular deviation between the maximum resolved
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shear stress and the maximum resolved shear strain is 2.9', compared

to a value of 24' for a tetragonal crystal. One would not expect such

a small deviation to be observable in a typical creep experiment, and

hence the flow appears to follow the maximum shear stress.

A dislocation theory which has been frequently referenced is that

proposed by Johnston. The theory was developed to explain the ob-56

served creep and stress-strain results for LiF. Since these results

bear a resemblance to those found for ice crystals, it has been sugges-

ted that the flow of ice may also be explained according to Johnston's

theory. '

Johnston begins by expressing the plastic shear strain rate j in
p

terms of the Burgers vector, b, the number of active dislocations, p,

and the velocity of screw dislocations, v as
s

t = 2bpv

It is assumed that p is a function of the total amount of plastic

strain, y , and v is a function of the resolved shear stress i. Ob-
p s

servation of etch pits on the surface of crystals of LiF reveal the

suggested relat~onships to take the following form

P = Zyp

~ =  .i !n

where u, D, and n are constants for LiF. Substituting Eqs. �.2! and

�.3! into Eq. �.1!, Johnston obtains the following flow relation-

ship:
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The solution of Eq. �.4! implies the existence of an initial strain

, associated with an initial density of mobile dislocations. Since
0'

no suitable etchant has been found for revealing basal dislocations in

ice, equations �.2! and �.3! can not be directly estabr ished. Never-51

theless, the quantitative results presented in the next section suggest

that Johnston's theory is applicable to ice crystals,

Wakahama has sought to model his observed stress-strain behavior55

by successive activation of Frank-Read sources on different planes with
di fferent threshold stresses. This model reproduces only his stress-

strain curves with no yield drop, and not those typically observed by

other investigators. His theory, with some additional considerations,

might be able to incorporate the yield drop phenomenon.

Recently some investigators have begun to study the problem of non-

basal slip. Readings and Bartlett have observed short slip line seg-57

ments perpendicular to the basal plane. They explain these as manifes-

tations of the cross-slip of screw dislocations on the basal plane .

Higashi ' has explained the higher yield stress and work hardening.58,59

found in non-basal slip in terms of intersections of non-basal disloca-

tions, Dislocations on the �010! plane can easily intersect disloca-

tions on other prism planes, an occurrence which tends to impede the

motion of these dislocations .

C. Mathematical Descri tions of Single Cr stal Flow

This section presents some of the relations which have been observed

between stress, str~in, and time for the creep, constant strain rate,
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and relaxation results presented in the previous section. The u'Itimate

purpose is to obtain a flow law which most accurately reproduces all of

the results, and which is app1i cable to the study of polycrystal1ine ice.

Early investi gators attempted to develop relationships between stress

and strain rate for the stationary portion of the creep curve. This por-

tion, referred to as secondary creep, is where the strain rate is minimum

and constant. The resulting creep curves produced some confusion since

in most cases there was no well-defined region of secondary creep. Never-

theless, the data was interpreted according to the following law:

y=kv

where k was observed to be a function of temperature. j was taken as

either the min~mum strain rate  tangent at zero time!, the slope of some

straight line passed through the points, or the maximum strain rate

associated with some linear terminal stage. Table 4.l summarizes some

of the results obtained.

Other investigators, rea1izing that there was no observable steady

state creep, attempted to express the strain as a function of time for

a gi ven stress. A11 of the proposed expressions take on the form

where C is a constant depending on stress and temperature, t is time,

and q is a constant, Table 4.2 summarizes the results of these inves-

tigations.
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~ n
Table 4. l Summary of Steady State Creep Results  g=kt !

Table 4.2 Summary of Transient Creep Results  Q=Ct !
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Constant Strain Rate

Readey and Kingery, Higashi et al., and Jones and Glen made54 . - 50 51

quantitative observations of the stress-strain relations for single

crystals at constant strain rate. Readey and Kingery begin with the

general relation:

y = k y
m n �. 7!

For the case of constant total strain rate, and for n = 2.0, an analyt-

ical solution is derived, which can be approximated by the following

relation for stress vs. total strain:

. 1/n j! -m/n
k

for the region of the stress-strain curve past the maximum. Using this

relation and experimental data, it is concluded that n varies from 2.5

to 1.5 with increasing strain, and that m is approximately 1.

Jones and Glen have analyzed thei~ data according to Eq . �.4!,51

derived from Johnston's dislocation model. They have worked under the

assumption that by adjusting the various parameters in �.4!, some agree-

ment could be reached between the observed stress-strain curves for ice

and those predicted by Johnston's theory. Considering a uniaxial speci-

= C - B i/D!"  C ~ - <! �.9!

where C = E/2A and B = 2bu/Y, The solution curves for Eq. �.9! show

a shape which is rather insensitive to changes in u and D, but sensitive

men of length R, cross-sectional area A, Young's modulus E and cross-

head speed v the relationship between shear stress and total shear strain

takes on the form.
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terms of the initial slope and the maximum stress. They found the ini-

tial slope 1l and the maximum slope ~ to follow the relations.

1/n
max C1Y exP  E2/RT! �.11!

where El = 8.4 Kcal/mole, E2 = 10.4 Kcal/mole, n = 1.53, T is absolute
temperature and M , Ml, and Cl are constants. These tests were conduc-

0'

ted at temperatures between -15 and -40' C and at strain rates between
-71.3 and 25 x 10 /sec. The iacreasing yield point with increasing

strain rate is characteristic of all stress strain results described

herein. The variation of initial slope with strain rate, however, is

difficult to explain.

Relaxation

Both Readey and Kingery and Ilakahama have developed quantitative54 55

descriptions of their relaxation curves. Readey and Kingery have ana-

lyzed their data in terms of Eq. �.7!, specializing for the case where

y = const  the dCnition of relaxation!. They have treated the plastic

to changes in n and y, the initial strain. By matching the theoreti-

ca', curves with their experimental curves, and using the same value of
2

a as that used by Johnston for LiF, they found n = 3.0, D = 1035 kg/cm,
4and y = 5 x 10 . All of their tests were conducted at the same strain

0

rate �.7 x 10 /sec.! and at temperatures between -20' and -70 C.

Higashi, Koinuma, and Nae have studied the constant rate test in50
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strain on the right-hand side as the total strain in order to facili-

tate a solution, and the resulting equation is:

where G is the elastic modulus in basal shear. The procedure of neglec-

ting the elastic strain on the right-hand side is questionable, since

relaxation involves the mutual interplay of elastic and plastic effects.

This is particularly apparent for the early portions of the curve,

where the deformation is almost totally elastic. Consideration of an

initial strain, however, as presented by Johnston, would increase the

validity of Eq. �.12!.

Nakahama concluded his constant strain rate tests by holding the

strain fixed and allowing the samples to re1ax. His data fit the foI1ow-

ing relation:
I

li< = liT i. a  < ! t

where t is measured from the time the crosshead stopped, I is the

stress at t = 0  in his case. the yield stress!, and A is a function

of ~ and temperature. For n = 2, the solution to Eq. �.12! takes on

a form similar to Eq. �.13!. Since Eq. �,12! is valid for relatively

large plastic strain, the coincidence supports the validity of Eq. �.7!.

D, General Flow Rule

Using the aforementioned results as a background, and keeping in

mind the ultimate aim of understanding the behavior of small sample



strength tests, a stress-strain time relationship shall be proposed

for single crystal ice. If such a law can reasonab1y reproduce the

creep, constant strain rate, and relaxation characteristics just de-

scribed, then it will be assumed to be valid for arbitrary stress and

strain histories.

Certain observations should be made with regard to time scale.

First of all, the creep results which have been reported and the ana-

lytical expressions describing them, generally cover time spans ot sev-

eral hours. At the moment the most significant portion of the creep

curve is the very beginning, since this represents the time span of a

small-scale test. A second observation is that the strain rates used

in the constant strain rate tests are generally much tower than those

experienced by the polycrystalline test sample. It will be assumed, how-

ever, that the stress-strain characteristics described are still appli ca-

ble at higher rates. Finally, most of the action in a relaxation test

takes place during the early periods, where the elastic and plastic

strains are comparable, and hence the information supplied by these tests

should be reproducible by the proposed flow law.

We shall begin by first assuming that all inelastic deformat~on is

due to slip on the basal plane. Although this assumption seems obvious

from experiments on single crystals, it is not so obvious f' or a single

crystal surrounded by other crystals in a polycrystal. Basal slip is

geometrically inhibi ted by the constraints of the surrounding grains,

and it has been suggested that in a polycrystal there are other mechan-

isms which control the plastic behavior of each grain. Included in
63



these mechanisms are grain boundary migration, formation of small-angle

boundaries, recrystallization, and crack formation. With the excep-64

tion of crack formation, these other deformation mechanisms are gener-

ally associated with greater time spans than those connected with sma11-

scale testing. Crack formation has been associated with the stress

states caused by basal slip, and hence basal slip must be treated be-65

fore crack formation. This subject will be discussed in the next two

chapters.

Since hydrostatic pressure has not been found to affect basal slip,

and since the influence of stresses normal to the basal plane on basal

slip has not been clarified, it will be assumed that the basal plastic63 .

strain will be directly related to the shear stress on the basal plane,

independent of the other stress components. The proposed relation has

the form

p p

Although this is the same as Eq. �.7!, a slightly different approach

wi11 be used here. The first thing that is apparent from Eq. �.14! is

that if no plastic strain has occurred at any given time, then no plas-

tic strain will occur in the next increment in time, regardless of the

stress. Consequently, in order to apply this relation it is necessary

to assume the existence of an initial plastic strain, y . This, as
0

Johnston points out, is equiva1ent to assuming an initial density of

mobile dislocations, and is a reasonable assumption to make. This is

a fairly obscure quantity to deal with, however, and hence it must be
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treated as a free parameter to be adjusted for best data fit, as has

been done by 3ones and Glen. The plastic strain developed and/or51

measured in a test, Y, must be treated as distinct from the total

plastic strain as follows:

�.15!Yp Ypm Yo

Representing the measured plastic shear strain as

�.16!= Y - T/G
pm

where YT is the total applied shear strain and G is the shear modulus,
Eq. �.14! yields

 Y T/G! k Y + 'Y T/G! T
T T o

�.17!

Eqs. �.14! and �.17! have already been identified with constant strain

rate tests. ' ' This involves replacing Y by vt, where v is now a54,51.

constant equal to the strain rate. Solution curves for Eq. �.17! for

constant strain rate are shown in figure �,6!, along wi th the various

parameter dependencies, for m = 1 and n = 2. It remains to apply Eq.

�.17! to creep and relaxation.

as:

~  !m nYpm =  Ypm Yo ' �.18!

In a creep experiment, samples a~e assumed to be loaded instantane-

ously to a stress -; and immediately respond with a strain z/G, The stress

is then held constant while the specimen deforms plastically. Since the

elastic response is constant, the quantity generally considered is the

measured plastic strain. Using Eqs. �.14! and �.15!, this is expressed
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where z is now a constant. As will be shown, for 0 < m < 1, the re-

sulting creep curves are all concave upward, similar to those found in
the previously described investigations. Consequently, the minimum
creep rate occurs at t = 0, where y = 0. Steinemann measured the46

pm

minimum creep rate as a function of stress, and found the relation

 ypm! . "'"
min

Eq. �.18!, for y = 0, yi el ds
pm

 Yp ! ' ky
pm min

which is equivalent to Steinemann's results. Glen and Jones found62

the strain rate of several tests to be proportional to T at a given

strain, a result which also follows from Eq. {4.18!. As shown in Appen-

dix A, an analysis of the creep results of Higashi, Koinuma, and Mae
60

shows that the stress dependence associated with their constant slope

portions and with the~r "reciprocal incubation times" is also the same

as that of Eq. �.18!. Therefore it is safe to assume that n used in

Eq. �.14! is equivalent to that found by previous creep investigators.

An appropriate interpretation of m is more elusive. Eq. �.18!,

solved for the measured plastic strain vs. time, yields:
1 jl-m

= [�-m!k~ t + y ]
pm 0

-y 0<m<1
0

form

The creep investigations summarized in table 4.2 used an equation of the



90

fied in terms of the magni tudes of k, T , and y to see if the relevantn

0

time scales overlap. The same kind of treatment can be generalized for

arbitrary m between 0 and 1.0. Unfortunately, lack of knowledge of yo

prevents such an analysis. At the moment, then, there is no preferred

choice for m.

Relaxation

Relaxation implies the application of a fixed strain and observing

the decrease of stress wi th time. Eq . � . 17!, specialized for rel axa-

tion, takes on the form:

~= � Gk y +y � ~/G! ~m n

T o
�.24!

where y is now a constant. Since this equation is difficult to inte-

grate, special cases will be noted, For the early portions of the curve,

where the applied strain is mostly elastic  i.e., y = </6!, Eq. �.24!

yields:

 r-1! k Gy,t +  GyT!

For the later regions where the applied strain is mostly plastic  dis-

�.25!

cussed earlier!, y is replaced by y + y in Eq. �.25!. These two
0 0

where q took on values between 1.5 and 2.0. Although Eq. �.23! implies
a zero slope at t = 0, most exhibited creep curves do not have this pro-

perty. It must be assumed, therefore, that the curve fit was intended
to cover a broad time range, with no particular attention to t = 0. For

the case where m = .5, it should be noted that Eq. �.21! approaches

Eq. �.23!, with q = 2.0, as t increases Such a statement must be quali-



forms are s imi 1 ar to those observed by Readey and Ki ngery  Eq . �. 1 2 ! !

and by Ilakahama  Eo. �.13!!. This suggests that Eq. �.14! suitab1y

describes the relaxation behavior of ice crystals.

Tem erature Effects

It has been generally implied that the proportionality constant in

the various flow relationships is a function of temperature. Therefore

it will be assumed that the flow modu']us k = k T!. Readey and Kingery

found the relationship to be of the following form:

I
k T! = k exp  -g/RT! �.26!

where g = 14.3 Kcal/mole, R is the gas constant and T is absolute tem-

perature. An analysis of the creep results of Higashi et al. in terms60

~Salinit

It is suggested that the effect of salinity  or browne volume! can be

incorporated into the constant k. This can be done both by correlating

the results of polycrystalline models  see next chapter! with stress-

strain-time tests on polycrystalline samples, and by a theoretical model.

One possible theoretical approach is to use the geomietric brine pocket

model of l,'eeks and Anderson and to determine the effective modulus k
15

e

of Eq. �.21!, as shown in Appendix A, reveals the same result with

g = 15.8. Eq. �. 26! reveal s k to be highly temperature sensi ti ve, as

can be seen from the fact that k -3' C! = 24 x k  -33' C!. This re1a-

tion suggests a starting point for future analysis of temperature effects

on small-scale sample strength.
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of the composite material of ice and brine. A similar treatment would
also be applicable to the elastic constants.
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Chapter V

MODELS FOR POLYCRYSTALt INE BEHAVIOR

In this chapter the results presented in the last chapter will be

used in the formulation of models to describe the behavior of polycrys-

tals, which will be applied to the conditions of small-scale strength

tests.

A. Deformation and Failure mechanisms in Col cr stalline Ice

As was mentioned in the last chapter, of the several proposed sin-

gle crystal deformation mechanisms in polycrysta]line ice, basal slip

has been chosen because it is most likely to prevail in the small-scale

strength test and because it is most readily quantifiable. The ques-

tion of the ef'feet of elastic anisotropy should first be mentioned.

Goetze suggested that elastic anisotropy causes stress concentration
73

at grain boundaries which induces brittle failure. The values of the

elastic constants, however, indicate that elastic anisotropy is not
66

very pronounced, and, in the 1ight of chapter IV, plastic anisotropy is

the more prominent directional characteristic.

Detailed investigations of the single crystal deformation and failure

mechanisms in polycrystal!ine ice have been conducted by Gold. 65,67,68

His investigations involved the study of samples deformed in compressive

creep at -9 to -10' C, with the load perpendicular to the columnar

grains. His experimental observations and conclusions can be summarized

as folio is:



1! The fact that single crystals slip only on one plane implies that

there are only two independent slip systems in a three-dimensional
situation and one independent slip system in a two-dimensional situ-

ation. Taylor has shown that for an arbitrary change of shape at69

constant volume  or area!, five independent slip systems are re-

quired in three dimensions and two are required in two dimensions.

This implies that individual ice grains cannot accommodate an arbi-

brary change of shape in plastic deformation. The tendency to slip,
accompanied by the geometric restr'ictions of the surrounding grains,

causes the development of large stress differences from grain to

grain, and of high stress concentrations at the grain boundaries.

2! The nonuniform internal stresses which develop as a result of the

above behavior are responsible for the occurrence of internal cracks

which are observed in compression tests to occur at loads well below

the failure load of the sample. In other words, cracking is re-

quired to accommodate the required deformation. Figure 5.1 shows

internal cracking in compressive samples.

3! This cracking occurs well bef'ore the other deformation mechanisms,

described earlier, take place.

4! Cracking occurs primarily within the grains, and, at low loads,
these cracks form and then do not propagate. The most frequently

observed crack orientation is parallel to the basal plane, with

cracks perpendicular to the basal plane taking second place. !n a

study of 407 transcrystalline cracks, 206 were parallel to the
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.6 -75

Figure 5.l Cracking Activity in Compression � Four
Different Stages of Crack Development  Gold !
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basal plane, 106 were perpendicular to the basal plane, and 14
were either one or the other. In the same stLIdy, of 121 grai.n65

boundary cracks observed, 85 occurred between grains whose boun-
daries were either parallel or perpendicular to the basal plane of
one or both of the grains making up +he boundary. figure 5.2
shows photographs of plastically deformed grains which have cleaved
parallel and perpendicular to the basal plane.

5! Cracks form due to tension across the above-mentioned planes caused
r

by the nonuniform stress field.

6! The formation of cracks causes stress redistribution in the sample.
Lf the load is applied for a sufficient length of time, continuous
cracking occurs, causing a continuous redistribution of stress, un-

til it is finally carried by those grains with basal planes paral-
lel to the direction of maximum shear. The accelerating creep on

these planes  described in chapter IV! terminates in a plastic fail-
ure of the sample. Experiments by Gold show, therefore, that com-

pressive creep samples fail at loads far below those achieved in
rapidly conducted strength tests  see also KingerP !.

The above observations are very enlightening, and they strongly sug-

gest that the modeling of polycrystalline ice in terms of single crystal
properties would be a very fruitful approach. Of particular interest
would be to quantify these nonuniform stress states for the purpose of
predicting cracking and ultimate failure. Such information, in fact,
is what is required for the interpretation of small-scale sample results.
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Figure 5.2 Plastic Deformation and Cracking in a Single
Crystal of a Polycrystalline Sample  Gold!

b! Cleavage parallel to basal plane
a! Cleavage perpendicular to the basal plane
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It should be noted, before continuing, that a good d a1 of theory

has been developed for predicting the behavior of a polycrystal from

single crystal properties. This work has been primarily concerned71

with predicting the stress-strain behavior of the polycrystal from

that of the single crystal. The type of single crystal stress-strain

behavior implied by these theories  generally applicable to metals!
does not embrace that observed for ice. In addition, these theories

seek results for a fine grained polycrystal  continuum II'I, chapter II}.

At the moment, then, these theories do. not seem applicable to the inter-

pretation of small-scale strength tests, nor, i.. fact, to ice in gen-

eral.

B. A Two-Grain Nodel

A first approximation to polycrystalline behavior can be obtained

from single crystal properties by considering two grains of different

sizes and orientations located in a small sample  figure 5.3}. For72

simplicity, a uniaxial, tensile test, subject to a constant crosshead

speed b, will be consi dered. Due to constraints f rom the neighboring

grains, and the conditions of the test, the two grains are considered

to be subject to a constant rate of strain v = ~/ <in the direction of
4

the applied load, where k is the length of the sample. The purpose here

is to show how the total 1oad carried by the two grains can vary with

the crosshead speed.

The force-displacement character of each grain is represented by a

spr"ing-dashpot system. The 1ateral interaction bet�een th= two grains
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Figure 5.3 A Two-Grain Yodel

F,

displacement

Figure 5.4 Spring-Dashpot Force-Displacetnent Curves
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is not considered in this model. The force, F., in each spring-dash-

pot system corresponds to the applied strain, which, by assumption, is
the same for both grains. The material parameters k, G, and y are0

assumed to be the same for both grains, Using Eq. �.14} with m = 1,

the force-deformation relationship for each grain takes the form  see

Appendix 8}
G.k.

dg i v
= G. � ' '  g + d . - � ! F. i= 1, 2 {5.1!i G,. i

where
G. = 2A.G

i

A- = cross sectional area of grain i
i

sin2e ~
k;=  2Ai!

>o
'i = sin2e,

1

e = angle between the basal plane and the plane perpendicular

to the specimen axis

This equation is the same as Eq. �;17!, wi th a slightly different

definition of variables. With the solution curves of fi gure 4.6 in

mind, proposed force-deformation curves for grains 1 and 2 are shown

in figure 5.4.

Due to the particular basal plane orientation, grain 1 is favorably

oriented for plastic flow while grain 2 is not. It is expected that in

any given sample there will be some distributi on between favorably and

unfavorably oriented grains. As a result, kl is much greater than k2.
This has the effect of giving grain 1 a lower yield point than grain 2

on the force deflection curve  see figure 4.6a! . The differert A. alsoi
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affect the k. values, but not as strongly. The difterent 6. values
l.

change the initial ~ iupt: Lut do not have mucli influence on the plas-
tic properties. The different g. values have the opposite effect of

l

k. on the yield point, and tend to flatten the after yield curve for
the less favorably oriented grain. Since n > 1, the k. influence on

the yield point will predominate.

It is now assumed that failure of the two-grain system occurs when

grain 2 fails. This is a reasonable assumption, since it is clear from
figure 5.4 that grain 2 will carry the brunt of the stress. Also, it was
mentioned earlier that failure due to tensile stress across the basal

plane is the most frequently observed grain failure mode. The failure

load F2 is a function of A2 and perhaps temperature and salinity. It
is assumed that F2 does not depend on the load rate. F2 corresponds
to a displacement 62, and the total load F* at failure is the sum of
the ordinates of the two curves at 62.

The effect on F* of increasing the strain rate v is now examined.
I *At increased strain rate v, F2 is still located on the same point of

the grain 2 curve, but the value of Fl at the same displacement has in-
creased; hence it can be seen that the total load carried by the two

grains increases with increasing strain rate. When the rate becomes
sufficiently high, both grains will be in their linear regions, and
subsequent increases in strain rate will not affect the load capacity.

The above phenomenon for two grains is just as likely to occur for
the several grains comprising the cross section. If the failure is con-

trolled by one grain {as is likely considering the relatively small
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number of grains in the cross section of the average tensi1e specimen!,

the conclusion fol1ows in the same way. If severa1 grain failures are

required for ultimate failure, then one can say that internal cracking

begins at higher loads with higher strain rates. Since internal crack-

ing is required to precipitate failure, it. is safe to conclude that

higher strain rates wil1 result in higher failure loads.

The conclusion just arrived at coincides with the experimental re-

sults for uniaxial tensile tests  chapter 1'IK, uniaxial tensile test

results! . Exceptions to this seem to occur at load rates higher than

those for which the strength was found to increase wtth increasing rate.

This suggests that once the load rate reaches the point where all the

grains are in their linear regions at failure, a rate mechanism other

than plasticity controls the fai lure load.

Another conclusion which can be drawn from this grain analysis con-

cerns the nature of tensile and compressive failures. The failure of

one grain in a tensile specimen causes a sudden increase in the tensile

field supported by the remaining grains. Although their 'load carrying

capacity increases as a result of the sudden increase in strain rate,

the fact that tension controls failure makes it unlikely that the re-

maining grains will be able to withstand the increased load. Hence ten-

sile failures are abrupt, and there is no time to observe the internal

cracking. Compression failures fol]ow two different, patterns. At low load

rates, the tension set up by inhomogeneous deformation is gently re-

lieved by the formation of cracks, and the specimen continues to support

an increasing load. At high load rates, an internal tensile crack can
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can precipitate an instability which cannot be relieved by plastic de-
formation. Hence, a gradua1 shear failure occurs in the former, whi1e

an abrupt bursting occurs in the latter.

C. A Two Dimensional Finite Element Yodel

The ability to explain an observed strength phenomenon from sing1e

crystal properties encourages the development of more refined models
which can deal quantitatively with some of the more complex situations

associated with small-scale tests. For this purpose, a finite element

model was developed.

At first glance, the finite element method is a natural for a poly-

crystalline analysis, since the grains themselves are "finite elements."

The idea of treating one grain as one element, however, was discarded

early in this research because the available elements have limitations

in their geometric flexibility, and because every internal node in

such an ana'lysis would represent the intersection of at 'least four grains.

It was felt that these factors would bias the analysis. Instead of the

one-element, one-grain approach, each grain was assembled from several

linear square and 45' triangular elements. To facilitate the analysis,

the division of the grain into such elements was programmed into the

computer analysis. This restricted the choice of grain node points to

lie on a grid equal in size to the element width.

The two dimensionality of the program fits in nicely with the treat-

ment of co!umnar grains. The ring tensile and uniaxial specimens of

figure 3.2 are readily modeled as plane stress or plane strain problems,
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depending on the sample thickness. For the flexural test, the extrem

fiber can be treated to be in plane stress.

Figure 5.5 shows a flow chart of the procedure used, and Appendix C

presents the matrix equations upon which the analysis is based. This

method is an extension of the basic finite element method for an elas-
74

tic continuum, which is reviewed by Zienkiewicz.

The elastic constants used in the analysis are those presented by

Bona and Scherrer for ice single crystals. From the resul ts presen-66

ted in chapter IV, a value of n = 2 was chosen, while m=1 was arbitraril ~

used because it coincides with the plotted curves of figure 4.6.

D. Results of the Finite Element, Anal sis

The most reasonable problem to deal with is the effect of load rate

on tensile strength, since this is the prob1em analyzed in section 8

of this chapter. It was desired to see whether or not the conclusions

arrived at using the two-grain model could be verified by the finite

element approach. This is a necessary verification, since the two-grain

model, and the conclusions reached through it, might be altered by the

general interaction between grains and by the nonuniformity of stresses

in the grains.

Figure 5.6 shows the geometry of the model which was used. This

model represents a uniaxial specimen subject to a constant strain rate

v. The thickness was taken as 0.1 inch. Figure 5.7 shows the resulting

force-deflection curves of this model tor different values of v. As ex-
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Read grain boundary
coordinates, connectivity
and material constants

Divide eac grain
into finite elements

Compute condensed stiffness
matrix of each grain

Assemble total
stiffness matrix

Read prescribed load
and/or displacement rate
for each boundary node.

Assemble total
load vector

Solve for displacements

Backsubstitute for element stresses
and strains

Compute increment of basal
plastic strain from
v' �= ~ v v,!' "

Update previously computed
plastic strain

Compute t
to lasti

Figure 5.5 Flow Chart of the Finite Element Method
Applied to an Elasto-Plastic Polycrystal
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Figure 5.6 Finite Element Simulation of a Uniaxial Tensile Test



Deflection  in.!

figure 5,7 Simulated Force-Deflection Curves for Yarying
Strain Rates
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pected, the stress-strain curves for higher values of v are more linear

than those for the lower v values. The curvature changes in the force-

deflection curves are due .o the behavior of yielded grains, an example

of which is shown for point 8 in figure 5.8, .ypical ly, the attempt.

of a point in a grain to yield in the direction of applied displace-

ment is thwarted by the constraints of the surrounding material in the

grain, which in turn is constrained by the neighboring grains. Hence

it appears that the point can not decide whether or not to yield. This

is a basic feature which is revealed by the finite element method, but

not by the spring-dashpot ~odel .

For the purpose of predicting the load at failure, it is observed

from the program output that point A in figure 5.6 experiences the most

severe tensile stress across the basal p1ane. It is proposed, there-

fore, that failure initiates when this component reaches a critical

value. Figure 5.9 shows the relation between basal tensile stress and

crosshead displacement at point A for different strain rates. It is ob-

served that for most of the test, the curves practically coincide. For

the purpose of illustration, an arbitrary failure stress for this point

is assumed, coinciding with 6 = O,p7 in. From figures 5.9 and 5.7, a

relation.hip between failure load and strain rate is obtained, and is

plotted in figure 5.10. This compares favorably with the uniaxial ten-

sile results of references 23 and 20, as shown in figures 3.7 and 3.9

respectively, It is difficult to compare the strain rate regime here

to the load rate regime in these references because of the uncertai nty

in the material properties used in this analysis. It is clear, however,
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Specimen disp'Iacement  in.!

Figure 5.8 Tensile Stress in the Dire -.tion of the
Applied Load vs. Total Displacement  point B!

Wo
Displacement   in.!

Figure 5.9 Tensile Stress Across the Basal Plane at
Critical Point A for Different Strain Rates
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10.

7.

Strain rate  sec. !

Figure 5.10 Failure Load ys . 5tr .in Rate

v=.04 v=.0067

Figure 5. 1'I Stress Distribution Across Simulated Specimen Section
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that the behavior shown in figure 5.10 will always occur regardless

of the material parameters, because it is a basic property of single

crystal plasticity.

The distribution of stress through the section at a fixed displace-

ment for different crosshead speeds is represented in figure 5.11. As

suggested by the experimental studies of Gold, which were described
in section A of this chapter, the nonuniformity of stresses is a func-

tion of plastic flow. Here, the nonuniformity is more pronounced at

the lower speed, where plasticity effects are more pronounced.

For variety, the same model with different Lasal plane orientations

was simulated at v = .02/sec. The resulting force-deflection curve is

shown along with the others in figure 5.7. Although this curve is dif-

ferent from the ot>er curve at v = .02/sec. due to the different grain

orientations, the nature of the curve is basically the same. The yield

behavior of this sample is interesting to note.
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Chapter VI

SUMMARY AND CONCLUSIONS

~Summa r

l. The determination of the strength of ice sheets requ',res a better

knowledge of the strength of ice and its dependence on environ-

mental parameters and loading rate.

2. The existing small-scale strength test results do not supply a

sufficient amount of information to make them useful in the de-

termination of the strength of ice sheets.

3. The smallness of these tests compared with ice sheet dimensions;

the unc1ear nature of the effect of load rate; and the consist-

ent dependence of strength values on the type of test employed

suggest alternative means for analyzing the data.

4. The coarse internal structure of ice coupled with the highly

directiona1 aspect of single crystal plastic flow imply that the

sample material can not be treated as homogeneous.

5. The apparent load rate effect found in ring tensile tests in-

dicates that further investigation jnto single crystal plasticity

would enlighten some of the anomalous results observed in small-

scale strength tests .

6. Single crystal plasticity has been found to be dominated by basal
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-glide. An analysis of the creep, constant strain rate, and relaxa-

tion resu1ts on single crystals of ice by various authors yields

the following relationship between the resolved shear stress and

the applied shear strain on the basal plane.

YT = total applied shear strain

~ = resolved shear stress

= initial strain
0

G s,hear modulus

k. = "flog modulus"

15< n <400< PI

k on temperature are confirmed by using Eq. �.1! to analyze the

results of Higashi, Koinuma, and Hae. The relation has the form60

k = k exp  -Q/RT!

where
k' is a constant

0, is approximately 15.0 kcal/mole

T is absolute temperature

R is the universal gas constant

8. Single crystal deformation mechanisms observed in compressive

creep tests of columnar polycrystalline ice suggest that an ice

7. The results of Readey and Kingery concerning the dependence of54
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sample should be modeled as an assembly of single crystals with

random orientation, each exhibiting the stress-strain-time behavior

of Eq, �.1!,

9. The treatment of two grains modeled by springs and dashpots shows

how the failure stress of a uniaxial tensile specimen increases

with increasing load rate.

10. A finite element model, treating a test sample as an assembly of

grains, simulates the character of stress inhomogenei ty due to

single crystal plasticity. In a uni axial ;ensile test simulation,

the assumption of sample failure due to basal cleavage of the most

critically stressed grain leads to a relationship between failure

load and strain rate strikingly similar to those obtained in actual

uniaxial tensile tests. The strain rate  load rate! regime in

which this relationship is applicable depends on the material con-

stants, which in turn depend on temperature and salinity.

ll. The Finite Element Method is a powerful tool for analyzing the

behavior of a polycrystal from single crystal properties. Although

such an ana'Iysis may be considered academic for fine grained poly-

crystals, it is a very real approach to understanding the results

of small-scale strength tests on ice, and, in general, to the

study of ice mechanics. Some suggestions as to its possible ap-

plications are presented in the next chapter.
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Conclusion

It has been shown that the mechanical properties of ice which

manifest themselves in a small-scale strength test can be understood

by considering the plastic properties of ice single crystals. Two
models have been presented which, by considering the sample as an

assembly of grains, are able to predict the increase of tensile

strength with increasing load rate. The use of such models can be

extended to study a wide spectrum of ice mechanical properties.



Chapter III

I'RQPOSALS FOR FUTURE RESEARCH

The use of the models presented herein have only scratched the

surface of the wide expanse of problems to >thich they are applicable.

In addition, some other possible resea' ch areas have come to light

in this study. These, plus some proposed analyti'cal model studies,

are listed be'low.

Ex erimental Studies

It seems that the potential use of the Brazil test is much more

promising than has been generally assumed. The problems surrounding

its previous use have been created partly because of the desire to

match ring tensile results. The ring tensile test, on the other hand,

. provides a poor index for bulk ice strength, and its continued use for

such a purpose is not recommended. It may, however, provide some

interesting information concerning single crystal properties.

A study of small beam flexura! tests with the load applied in the

plane of the ice sheet rather Chan perpendicu]ar to it should supply

some correlation with ring tensile results.

Sin le Cr stal Pro erties

An analyti,cal treatment of the effect of brine volume on single

crystal elasticity and plasticity, similar to that which has been done

for strength, is recommended. This should involve the treatment of

the single crystal material as a composite of ice and holes. Elasticity
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solutions exist for the stress distribution associated with a regu-

lar array of holes, Using an energy approach., this can be applied ta
the determination of the effective elastic moduli. Simi'lar logic
might be appli.cable for the determination of an effective flow modulus.

S rin -Dash ot Model

The qualitative discussion of the spring-dashpot model can be quan-
tified using Eq. �.1! . This can lead to the treatment of N grains,
and relationships between strength, rate, and N would be interesting
to see, in the light of the size effects which have been reported.

Another refinement would involve introducing some kind of lateral con-

nection between spring-dashpot elements to model the lateral interac-

tion of grains.

Finite Element Model

The most interesting potential application of this model is to the

treatment of internal cracking. Grains reaching a threshold tensile

stress across their basal plane can be programmed to "crack." This

occurrence can be modeled by a change in the grain rigidity matrix.

It would be very interesting to compare the results of such a study to

the detailed experimental crack analyses of Gold.

The ring tensile test can be modeled by the method presented i n

chapter V, for the purpose of determining the relevant grain threshold
stresses which are required to simulate observed strength results .

Simulation of creep, stress-strain, and relaxation tests on polycrystal-

li ne samp1es, and the comparison of these simulations to actual test



results can lead to a better understanding of the material properties

of the single crystal . The Brazi'I test can also be modeled using the

method presented here, to see if the predicted uniform tensile stress

under the load is actually realized in the te . sample. Effects of

temperature, salinity, load rate, and grain size can be studied in

all of these cases.

Ice Sheet Stren th

Getting back to the original problem, there are some indications

that the mechanisms discussed here have some bearing on the bulk ice

behavior in an ice sheet. This author has observed films, taken by

the Cold Regions Research and Engineering Laboratory  CRREL!, of a

cylindrical pile forced against an ice sheet. These tests simulated

the forces exerted by an ice sheet on a structural support. It is ob-

served that the application of the load is accompanied by the gradual

whitening of a circular region ahead of the pile. This whitening is due

to the formation of i nternal cracks, the same phenomenon studied by Gold.

The i ncreased whitening is accompanied by a gradual decrease in the

slope of the force-deflection curve. The force dropped off when the70

white material disintegrated, and it did not pick up until the pile

had pushed its way through the disintegrated material to the rim of

the circle, where the ice was once again solid. Having done this,

the entire process was repeated. The load, therefore, was found to be

periodic, and the magnitude and period was a function of the stress

state in the ice sheet and the internal craking of the ice. This
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periodicity was mentioned in chapter I in connection with ice forces

observed on offshore structures.

The prediction of the above behavior using the methods described
herein is a feasible research direction. This is not to say that

one should model an ice sheet by treating every grain. The methods

which have been discussed, however, can be used to describe the bulk

properties af a crystal aggregate, properties which can be used in
the stress and failure analysis of an ice sheet in contact with a

s true ture.
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The Inter retation of the Results of Hi ashi, Koinuma, and Mae
60

Ys

Time

Higashi et al. have reported the steady state strain rate Y60

and the incubation time t to behave according to the following re-
1

1 ati onshi ps:

= Kl~ exp  -Q/RT!

1/t; = K2~ exp  -Q/RT!

It will be assumed that this constant rate region follows a reqion

describable by Eq. �.14!, Hence these two relationships can be

analysed in terms of Eq . �. 21 !, It will also be assumed that the

constant rate portion of figure A.l occurs at a large enouqh time so

1/1-m
= L�-m!k~ tj

that
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This is of the same form as the proposed power law relationships, and

hence, for simpli city,

 A.e!q = 1/1-m

 A.3! becomes

y =  -! I q t' = ctqn  A.5!

Ys
t - t. Ys

s i
 A.6!

Using  A.5! for Y and Y, the following is obtained from  A,6!

 A.7!
s q - 1 i

From  A,l! and  A.2!, it, is observed that

Kl
ys

2

Substituting  A,5!,  A.7!, and  A.8! into  A.6!, the following is

 A.8!

obtained
1 Kl  1!q 1 I t q  A.9!

Recalling the components of C in Eq.  A.5!, and expressing t. in terms
1

of  A.2!, one obtains

 -!q T"q =  q-l!q   � ! K ~ exp  -qQ/RT!  A.10!

or, equivalently

where subscript p has been dropped. y and t, are re'Iated as follows:
s 1
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rk n   1!q   � ! K x exp  g/RT!q-1 "2
 A.ll!

 A.l2!
I

k = k exp  -g/RT!

which is equivalent to the temperature dependence found by Readey and

Kingery  see Eq. �.24!!.

Two observations are now apparent. The stress dependence r in Eqs.

 A.l! and  A.2! is equivalent to the stress dependence n of Eq. �.14!.

Secondly, k is of the form
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Appendix B

Derivation of the Force Dis lacement Relation for the S rin -Dash-

of a Grain.

Re begin with the basic flow equation, with m = l.

 y � ~/G! = k  y + y - ~/G!T
T T o

 B.1!

It will be assumed that yT and ~ represent mean strains and stresses
at the section considered. Hence, they can be expressed in terms of

the average lo~gitudinal strain and stress, z and o, as:

 8.2!y = c'sin26
T

 sin2~!
2

 8.3!

v dF sin29 yo F F
2GA d~ 2 sin2o 2GA ! A  8,4!

Each grain has a different area A-, and a different orientation 6 ..'l i

Equation  8.4! for the spring-dashpot system representing grain i has

the form
dF. G.k. F;
d6 1 v

= G- - � + 6. - � '!  F.!
i G-

1

 B.o!

Since the case of constant strain rate is being considered, g is repre-

sented as vt. For the spring-dashpot model, o is represented by F/A,

and g represents c. Noting these substitutions and those of Eqs.  8.2!

and  8.3!, and changing independent variable from t to 6, Eq.  8.1!

yields:
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G- =2AG
1where

Y 
i sin28

This is the relation used in chapter V.
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cr stal line AssemblyTwo-Oimentional Finite Element A

of Elastic-Time De endent Plastic Grains.

Each grain is composed of square and 45' triangular elements.

The divi si on of the grain i nto these elements i s part of the computer

program. The assembly of these elements into a grain stiffness ma-

trix, K , is accomplished by normal fini te element techniques. Grain

nodes are programmed to be numbered so that all of the boundary nodes
come first, and the internal nodes second. Hence, the grain displace-

ment vector, UG, and the stiffness matrix are partitioned as follows:
1

KB 8 ~ KB
I

UB
KG = f

KI 8 t K8UI

Applying virtual work to the grain, one obtains

UBI

BB I BI
I

IB i II

PB

UI

where PB represents the force vector associated with the boundary nodes.
Eliminating U from Eqs.  C.z!, the following stiffness equations is

obtained:
c

KBB UB = PB

where
K = K K K K

88 BB BI I I IB
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K8> is referred to as the condensed stiffness matrix of the grain.
These can then be assembled with other grain condensed stiffness

matrices by usual finite element methods to form the stiffness matrix

of the polycrystal.

Plastic Flow

The total strain of an element is divided into two parts, the

elastic strain vector e and the plastic strain vector e . It is
e p

assumed that at any point in time the total stress is entirely due

to elastic strain. The plastic strain at each time step is treated

as an initial strain, and hence

where D is the elastic rigidity matrix, o. is the stress vector, and

e is the total strain vector. According to the finite element method,

the element displacements and strains are expressed as functions of

the element nodal displacements, UE, asE,n'

a=HUE

where N and 8 are functions of x and y in a plane problem. The

principle of virtual work states that

6E . adA = 6u . p dsT T.

A s

where p is the force per unit length applied to the boundary, A is the

element and s is the portion of the element boundary along which forces



are prescribed. Substituting the stress-strain relations  C,5! and

the element expansions  C.7!, the left-hand side of  C.8! becomes

SUE B D BUE - c ! dA
A nr 4  c.g!

Letting
 C.lo!

 C.ll!

 C.g!becomes

 C.12!aU IK U - P ]
'n ' En

where K is the usual element stiffness matrix and P is the load
E P

vector due to pl as ti ci ty.

In assembling Eq.  C.8! for the entire grain, the contributions

of' the right-hand si de cancel along the contiguous element boundaries,

leaving a gra~ n boundary force vector PB. The resulting equation is

an altered form of Eq.  C.2! and has the form

K
BB I BI PS

 C.13!
UIIH i II

1

where PB and P comprise the grain load vector due to plasticity
Bp Ip

which is assembled from the element P matrices. Eliminating the in-
P

ternal displacements, Eq.  C.13! becomes

c cKBB UB= P + PP  C.14!

B DBdA = K
A
r E

B DE dA= P
T

P
A

Pep
+ P

Ip
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where KBB is described by Eq.  C.4!, and PB is expressed asc c

Bp

P � P K K P
Bp Bp SI I I Ip

 C.15!

and is referred to as the condensed grain boundary load vector due to

pl asti ci ty.

Eq.  C.14! for each grain can be assembled by usual finite ele-

ment means to form the stiffness matrix of the polycrystal.

The above analysis is based on a knowledge of e . At t = 0, ep ' p

is computed from the prescribed initial basal strain discussed in chap-

ter IY. It is subsequently updated from the changes in the basal strain

as described by the flow rule �.14! .
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